Exponential of a hamiltonian in large subsets of a lattice and applications

J. Nourrigat[1]

  • [1] Département de Mathématiques, UMR CNRS 6056, Université de Reims. B.P. 1039. 51687 Reims Cedex 2. France

Journées Équations aux dérivées partielles (2005)

  • page 1-9
  • ISSN: 0752-0360

How to cite

top

Nourrigat, J.. "Exponential of a hamiltonian in large subsets of a lattice and applications." Journées Équations aux dérivées partielles (2005): 1-9. <http://eudml.org/doc/10615>.

@article{Nourrigat2005,
affiliation = {Département de Mathématiques, UMR CNRS 6056, Université de Reims. B.P. 1039. 51687 Reims Cedex 2. France},
author = {Nourrigat, J.},
journal = {Journées Équations aux dérivées partielles},
keywords = {quantum Hamiltonian; large system of particles; lattice of particles; exponential and its properties},
language = {eng},
month = {6},
pages = {1-9},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Exponential of a hamiltonian in large subsets of a lattice and applications},
url = {http://eudml.org/doc/10615},
year = {2005},
}

TY - JOUR
AU - Nourrigat, J.
TI - Exponential of a hamiltonian in large subsets of a lattice and applications
JO - Journées Équations aux dérivées partielles
DA - 2005/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 9
LA - eng
KW - quantum Hamiltonian; large system of particles; lattice of particles; exponential and its properties
UR - http://eudml.org/doc/10615
ER -

References

top
  1. S. ALBEVERIO, Y. KONDRATIEV, T. PASUREK, M. RÖCKNER, Euclidean Gibbs states of quantum crystals. Moscow Math. Journal.1, No 3, (2001), p. 307-313. Zbl0993.82006MR1877595
  2. L. AMOUR, M. BEN-ARTZI, Global existence and decay for viscous Hamilton-Jacobi equations, Nonlinear Analysis: Theory, Methods and Applications, 31, 5-6, (1998), 621-628. Zbl1023.35049MR1487850
  3. L. AMOUR, C. CANCELIER, P. LEVY-BRUHL and J. NOURRIGAT, Thermodynamic limits for a quantum crystal by heat kernel methods. Université de Reims, 2003, and mp-arc 03.541. Zbl1052.82004
  4. L. AMOUR, C. CANCELIER, P. LEVY-BRUHL and J. NOURRIGAT, States of a one dimensional quantum crystal. C. R. Math. Acad. Sci. Paris, 336 (2003), no. 12, 981-984. Zbl1052.82004MR1993966
  5. L. AMOUR, Ph. KERDELHUE, J. NOURRIGAT. Calcul pseudodifférentiel en grande dimension. Asymptot. Anal. 26 (2001), no. 2, 135-161. Zbl0981.35108MR1832582
  6. N. ASHCROFT, D. MERMIN, Solid State Physics. Saunders College . Fort Worth, 1976. 
  7. V. BACH, J.S. MÖLLER, Correlation at low temperature. I. Exponential decay. J. Funct. Anal., 203 (2003), no. 1, 93-148. Zbl1031.82003MR1996869
  8. J. BELLISSARD, R. HOEGH-KROHN, Compactness and the maximal Gibbs state for random Gibbs fields on a lattice. Comm. Math. Phys, 84 (1982), no. 3, 297-327. Zbl0495.60057MR667405
  9. O. BRATTELI, D.W. ROBINSON, Operator algebras and quantum statistical mechanics. 2. Equilibrium states. Models in quantum statistical mechanics. Second edition. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1997. Zbl0903.46066MR1441540
  10. L. GROSS, Decay of correlations in classical lattice models at high temperature. Comm. in Math. Phys, 68 (1979), 1, 9-27. Zbl0442.60097MR539733
  11. B. HELFFER, Semiclassical analysis, Witten Laplacians, and statistical mechanics. Series on Partial Differential Equations and Applications, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 2002. Zbl1046.82001MR1936110
  12. B. HELFFER, Remarks on the decay of correlations and Witten Laplacians, Brascamp-Lieb inequalities and semi-classical limit, J. Funct. Analysis,155, (2), (1998), p.571-586. Zbl0921.35141MR1624506
  13. B. HELFFER, Remarks on the decay of correlations and Witten Laplacians, II. Analysis of the dependence of the interaction. Rev. Math. Phys.11 (3), (1999), p.321-336. Zbl1054.82002MR1688446
  14. B. HELFFER, Remarks on the decay of correlations and Witten Laplacians, III. Applications to the logarithmic Sobolev inequalities. Ann. I.H.P. Proba. Stat,35, (4), (1999), p.483-508. Zbl1055.82004MR1702239
  15. B. HELFFER, J. SJÖSTRAND, On the correlation for Kac like models in the convex case, J. Stat. Physics, 74 (1, 2), (1994), p.349-409. Zbl0946.35508MR1257821
  16. R. A. MINLOS, Introduction to Mathematical Statistical Physics. University Lecture Series 19, American Mathematical Society, Providence, 2000. Zbl0998.82501MR1727910
  17. R. A. MINLOS, E.A. PECHERSKY, V. A. ZAGREBNOV, Analyticity of the Gibbs states for a quantum anharmonic crystal: no order parameter. Ann. Henri Poincaré3 (2002), p. 921-938. Zbl1016.82005MR1937608
  18. J. NOURRIGAT, Ch. ROYER, Thermodynamic limits for Hamiltonians defined as pseudo-differential operators. Comm. Partial Differential Equations, 29 (2004), no. 3-4, 383-417. Zbl1072.35212MR2041601
  19. D. ROBERT, Autour de l’approximation semiclassique. Progress in Mathematics, 68. Birkhauser Boston, Inc., Boston, MA, 1987. Zbl0621.35001MR897108
  20. Ch. ROYER, Formes quadratiques et calcul pseudodifférentiel en grande dimension. Prépublication 00.05. Reims, 2000. 
  21. D. RUELLE, Statistical Mechanics: rigorous results. Addison-Wesley, 1969. Zbl0177.57301MR289084
  22. B. SIMON, The statistical Mechanics of lattice gases. Vol. I. Princeton Series in Physics. Princeton, 1993. Zbl0804.60093MR1239893
  23. J. SJÖSTRAND, Evolution equations in a large number of variables, Math. Nachr.166 (1994), 17-53. Zbl0837.35061MR1273320
  24. J. SJÖSTRAND, Correlation asymptotics and Witten Laplacians, Algebra i Analiz, 8 (1996), 1, 160-191. Translation in St Petersburg Math. Journal, 8 (1997), 1, 123-147. Zbl0877.35084MR1392018
  25. J. SJÖSTRAND, Complete asymptotics for correlations of Laplace integrals in the semiclassical limit. Memoires S.M.F., 83, (2000). Zbl1044.81046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.