Remarks on decay of correlations and Witten laplacians III. Application to logarithmic Sobolev inequalities
Annales de l'I.H.P. Probabilités et statistiques (1999)
- Volume: 35, Issue: 4, page 483-508
- ISSN: 0246-0203
Access Full Article
topHow to cite
topHelffer, Bernard. "Remarks on decay of correlations and Witten laplacians III. Application to logarithmic Sobolev inequalities." Annales de l'I.H.P. Probabilités et statistiques 35.4 (1999): 483-508. <http://eudml.org/doc/77637>.
@article{Helffer1999,
author = {Helffer, Bernard},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {4},
pages = {483-508},
publisher = {Gauthier-Villars},
title = {Remarks on decay of correlations and Witten laplacians III. Application to logarithmic Sobolev inequalities},
url = {http://eudml.org/doc/77637},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Helffer, Bernard
TI - Remarks on decay of correlations and Witten laplacians III. Application to logarithmic Sobolev inequalities
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 4
SP - 483
EP - 508
LA - eng
UR - http://eudml.org/doc/77637
ER -
References
top- [1] A. Val. Antoniouk and A. Vict. Antoniouk, Weighted spectral gap and logarithmic Sobolev inequalities and their applications, Preprint, 1993. MR1265568
- [2] A. Val. Antoniouk and A. Vict. Antoniouk, Decay of correlations and uniqueness of Gibbs lattice systems with nonquadratic interaction, J. Math. Phys.37 (11) 1996. Zbl0859.60099MR1417151
- [3] D. Bakry and M. Emery, Diffusions hypercontractives, in: "Séminaire de Probabilités XIX", Lecture Notes in Math., Vol. 1123, Springer, 1985, pp. 179-206. Zbl0561.60080MR889476
- [4] V. Bach, T. Jecko and J. Sjöstrand, Part I Witten Laplacians: Perturbative approach ; Part II Witten Laplacians: Semiclassical approach; Personal communication. Zbl0877.35084
- [5] T. Bodineau and B. Helffer, Log-Sobolev inequality for unbounded spins systems, Preprint (December 1998), to appear in J. Funct. Anal. (1999). Zbl0972.82035MR1704666
- [6] J.M. Combes and L. Thomas, Asymptotic behavior of eigenfunctions for multiparticle Schrödinger operators, Commun. Math. Phys.34 (1973) 251-270. Zbl0271.35062MR391792
- [7] J.-D. Deuschel and D. Strook, Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising models, J. Funct. Anal.92 (1990) 30-48. Zbl0705.60066MR1064685
- [8] J. Fröhlich, Phase transitions, Goldstone bosons and topological superselection rules, Acta Phys. Austriaca, Suppl.XV (1976) 133-269. MR523547
- [9] B. Helffer, Spectral properties of the Kac operator in large dimension, in: J. Feldman, R. Froese and L.M. Rosen, eds., Proceedings on Mathematical Quantum Theory II: Schrödinger Operators, August 1993; CRM Proceedings and Lecture Notes8, 1995, pp. 179-211. Zbl0826.35085MR1332041
- [10] B. Helffer, Witten Laplacians and Antoniouk's results, Preliminary notes, May 1997.
- [11] B. Helffer, Dobrushin's criteria and Antoniouk's results, Preliminary notes, May 1997.
- [12] B. Helffer, Remarks on decay of correlations and Witten Laplacians. Brascamp-Lieb inequalities and semi-classical analysis, J. Funct. Anal.155 (1998) 571-586. Zbl0921.35141MR1624506
- [13] B. Helffer, Remarks on decay of correlations and Witten Laplacians. II - Analysis of the dependence on the interaction, Preprint, December 1997; to appear in Rev. in Math. Physics. Zbl1054.82002MR1688446
- [14] B. Helffer and J. Sjöstrand, On the correlation for Kac like models in the convex case, J. Statist. Phys.74 (1-2) (1994) 349-369. Zbl0946.35508MR1257821
- [15] J. Johnsen, On the spectral properties of Witten Laplacians, their range projections and Brascamp-Lieb's inequality, Preprint, December 1997. Zbl1023.58012
- [16] N. Lerner and J. Nourrigat, Lower bounds for pseudodifferential operators, Ann. Inst. Fourier40 (1) (1990) 657-682. Zbl0703.35182MR1091836
- [17] A. Naddaf and T. Spencer, On homogeneization and scaling limit of some gradient perturbations of a massless free field, Commun. Math. Phys.183 (1997) 55-84. Zbl0871.35010MR1461951
- [18] D. Ruelle, Probability estimates for continuous spin systems, Commun. Math. Phys.50 (1976) 189-194. MR424129
- [19] C.G. Simader, Essential self-adjointness of Schrödinger operators bounded from below, Math. Z.159 (1978) 47-50. Zbl0409.35026MR470456
- [20] J. Sjöstrand, Ferromagnetic integrals, correlations and maximum principles, Ann. Inst. Fourier44 (2) 601-628. Zbl0831.35031MR1296745
- [21] J. Sjöstrand, Correlation asymptotics and Witten Laplacians (Preprint Ecole Polytechnique, December 1994), St. Petersburg Math. J.8 (1997) 160-191. Zbl0877.35084MR1392018
- [22] J. Sjöstrand and W.M. Wang, Supersymmetric measures and Maximum principles in the complex domain—Exponential decay of Green's functions, Preprint Ecole Polytechnique, November 1997; to appear in Annales de l'ENS (1999). Zbl0941.47033
- [23] A.D. Sokal, Mean-field bounds and correlation inequalities, J. Statist. Phys.28 (3) (1982) 431-439. MR668133
- [24] D.W. Strook and B. Zegarlinski, The logarithmic Sobolev inequality for continuous spin systems on a lattice, J. Funct. Anal.104 (1992) 299-326. Zbl0794.46025MR1153990
- [25] D.W. Strook and B. Zegarlinski, The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition, Commun. Math. Phys.144 (1992) 303-323. Zbl0745.60104MR1152374
- [26] N. Yoshida, The log-Sobolev inequality for weakly coupled φ4-lattice fields, Preprints, October 1997, June 1998; to appear in Prob. Theory Related Fields. Zbl0948.60095MR1715549
- [27] B. Zegarlinski, The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice, Commun. Math. Phys.175 (1996) 401-432. Zbl0844.46050MR1370101
Citations in EuDML Documents
top- Nobuo Yoshida, The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice
- J. Nourrigat, Exponential of a hamiltonian in large subsets of a lattice and applications
- Johannes Sjöstrand, Complete asymptotics for correlations of Laplace integrals in the semi-classical limit
- Michel Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.