Lecture notes : Stability of Noncharacteristic Viscous Boundary Layers
Guy Métivier[1]
- [1] IMB Université de Bordeaux I, 33405 Talence Cedex
Journées Équations aux dérivées partielles (2006)
- page 1-82
- ISSN: 0752-0360
Access Full Article
topHow to cite
topMétivier, Guy. "Lecture notes : Stability of Noncharacteristic Viscous Boundary Layers." Journées Équations aux dérivées partielles (2006): 1-82. <http://eudml.org/doc/10619>.
@article{Métivier2006,
affiliation = {IMB Université de Bordeaux I, 33405 Talence Cedex},
author = {Métivier, Guy},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-82},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Lecture notes : Stability of Noncharacteristic Viscous Boundary Layers},
url = {http://eudml.org/doc/10619},
year = {2006},
}
TY - JOUR
AU - Métivier, Guy
TI - Lecture notes : Stability of Noncharacteristic Viscous Boundary Layers
JO - Journées Équations aux dérivées partielles
DA - 2006/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 82
LA - eng
UR - http://eudml.org/doc/10619
ER -
References
top- Bardos C., Brezis D. and Brezis H., Perturbations singulières et prolongement maximaux d’opérateurs positifs, Arch.Rational Mech. Anal., 53 (1973), pp 69–100. Zbl0281.47028
- Bardos C. and Rauch J., Maximal positive boundary value problems as limits of singular perturbation problems, Trans. Amer.Math.Soc., 270 (1982), pp 377–408. Zbl0485.35010MR645322
- Bony J-M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sc. E.N.S. Paris, 14 (1981) pp 209–246. Zbl0495.35024MR631751
- Chazarain J. and Piriou, A., Introduction to the Theory of Linear Partial Differential Equations, North Holland, Amsterdam, 1982. Zbl0487.35002MR678605
- Gardner R. and Zumbrun K., The gap lemma and geometric criteria instability of viscous shock profiles, Comm. Pure Appl. Math, 51 (1998), pp 797–855. Zbl0933.35136MR1617251
- Gilbarg, D., The existence and limit behavior of the one-dimensional shock layer, Amer. J. Math. 73. 1951, 256-274. Zbl0044.21504MR44315
- Gisclon M. Étude des conditions aux limites pour un système strictement hyperbolique, via l’approximation parabolique. J. Math. Pures Appl., 75 (1996), pp 485–508. Zbl0869.35061
- Gisclon M. and Serre D., Étude des conditions aux limites pour un système strictement hyberbolique via l’approximation parabolique. C. R. Acad. Sci. Paris SÈr. I Math., 319 (1994), pp 377–382. Zbl0808.35075
- Goodman, J., Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rational Mech. Analysis 95. (1986), pp 325–344. Zbl0631.35058MR853782
- Goodman J. and Xin Z. Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Rational Mech. Analysis 121 (1992), pp 235–265. Zbl0792.35115MR1188982
- Grenier E. and Guè 0., Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems, J.Diff.Equ., 143 (1998) pp 110–146. Zbl0896.35078MR1604888
- Grenier E. and Rousset F., Stability of one dimensional boundary layers by using Green’s functions, Comm. Pure Appl. Math. 54 (2001), pp 1343–1385. Zbl1026.35015
- Guès O., Perturbations visqueuses de problèmes mixtes hyperboliques et couches limites, Ann.Inst.Fourier, 45 (1995) pp 973–1006. Zbl0831.34023MR1359836
- Guès O., Problème mixte hyperbolique quasilinéaire caractéristique, Comm. in Part.Diff.Equ., 15 (1990), pp 595–645. Zbl0712.35061MR1070840
- Guès O., Métivier G., Williams M., and Zumbrun, K., Multidimensional viscous shocks I: degenerate symmetrizers and long time stability, Journal of the AMS, 18 (2005), pp 61-120 Zbl1058.35163MR2114817
- Guès O., Métivier G., Williams M., and Zumbrun, K., Multidimensional viscous shocks II: the small viscosity problem, Comm. Pure and Appl. Math., 57 (2004) pp 141–218. Zbl1073.35162MR2012648
- Guès O., Métivier G., Williams M., and Zumbrun, K., Existence and stability of multidimensional shock fronts in the vanishing viscosity limit, Arch.Rat.Mech.Anal., 175 (2005) pp 151–244. Zbl1072.35122MR2118476
- Guès O., Métivier G., Williams M., and Zumbrun, K., Navier-Stokes regularization of multidimensional Euler shocks, Ann. Scient. Ec. Norm. Sup., to appear. Zbl1173.35082MR2224659
- Guès O., Métivier G., Williams M., and Zumbrun, K., Nonclassical multidimensional viscous and inviscid shocks, preprint Zbl1162.35050
- Guès O., Métivier G., Williams M., and Zumbrun, K., Viscous Boundary Value Problems for Symmetric Systems with Variable Multiplicities, preprint Zbl1138.35052
- Guès O., Métivier G., Williams M., and Zumbrun, K., Uniform stability estimates for constant-coefficient symmetric hyperbolic boundary value problems, Comm. in Partial Diff. Equ., to appear Zbl1133.35404MR2334823
- Guès O., Métivier G., Williams M., and Zumbrun, K., Stability of noncharacteristic boundary layers for the compressible Navier-Stokes and MHD equations, in preparation. Zbl1217.35136
- Gues O. and Williams M., Curved shocks as viscous limits: a boundary problem approach, Indiana Univ. Math. J., 51 (2002), pp 421-450. Zbl1046.35072MR1909296
- Hoff D. and Zumbrun K., Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J., 44 (1995), pp 603–676. Zbl0842.35076MR1355414
- Kawashima S. and Shizutz Y., Systems of equations of hyperbolic-parabolic type, with applications to the discrete Boltzmann equations, Hokkaido Math.J., 14 (1985) pp 249–275. Zbl0587.35046MR798756
- Kawashima S. and Shizutz Y, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tohoku Math.J., 40 (1988) pp 449–464 Zbl0699.35171MR957056
- Kreiss H.O., Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math., 23 (1970), pp. 277-298. Zbl0193.06902MR437941
- Lions J.L., Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lectures Notes in Math., 323, Sringer Verlag, 1973. Zbl0268.49001MR600331
- Majda A., The stability of Multidimensional Shock Fronts, Mem. Amer. Math. Soc., n 275, 1983. Zbl0506.76075MR683422
- Majda A., The Existence of Multidimensional Shock Fronts, Mem. Amer. Math. Soc., n 281, 1983. Zbl0517.76068MR699241
- Majda A., and Osher S., Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28 (1975), pp 607-676. Zbl0314.35061MR410107
- Majda, A. and Pego, R., Stable viscosity matrices for systems of conservation laws, J. Diff. Eq., 56. (1985), pp 229-262. Zbl0512.76067MR774165
- Malgrange B., Ideals of differentiable functions, Oxford Univ. Press, 1966. Zbl0177.17902MR212575
- Métivier G., Stability of multidimensional weak shocks, Comm., Partial Diff. Eq., 15 (1990), pp 983-1028. Zbl0711.35078MR1070236
- Métivier G., The Block Structure Condition for Symmetric Hyperbolic Problems, Bull. London Math.Soc., 32 (2000), pp 689–702 Zbl1073.35525MR1781581
- Métivier G, Stability of multidimensional shocks. Advances in the theory of shock waves, 25–103, Progr. Nonlinear Differential Equations Appl., 47, Birkhäuser Boston, Boston, MA, 2001. Zbl1017.35075MR1842775
- Métivier G., Small Viscosity and Boundary Layer Methods, Birkhäuser, Boston 2004. Zbl1133.35001MR2151414
- Métivier G. and - Zumbrun K., Viscous Boundary Layers for Noncharacteristic Nonlinear Hyperbolic Problems, Memoirs AMS, 826 (2005). Zbl1074.35066
- Métivier G. and - Zumbrun K., Hyperbolic Boundary Value Problems for Symmetric Systems with Variable Multiplicities, J. Diff. Equ., 211 (2005) pp 61-134. Zbl1073.35155MR2121110
- Métivier G. and - Zumbrun K., Symmetrizers and continuity of stable subspaces for parabolic–hyperbolic boundary value problems. J. Dis. and Cont. Dyn. Sys., 11 (2004) pp 205-220. Zbl1102.35332MR2073953
- Pego R., Stable viscosities and shock profiles for systems of conservation laws, Trans. A.M.S., 282 (1984), pp 749-763. Zbl0512.76068MR732117
- Plaza R. and Zumbrun K., An Evans function approach to spectral stability of small-amplitude shock profiles, J. Disc. and Cont. Dyn. Sys. 10. (2004), pp 885–924. Zbl1058.35164MR2073940
- Ralston J., Note on a paper of Kreiss, Comm. Pure Appl. Math., 24 (1971), pp 759–762. Zbl0215.16802MR606239
- Rauch J., is a continuable initial condition for Kreiss’ mixed problems, Comm.Pure and Appl.Math., 25 (1972) pp 265–285. Zbl0226.35056
- Rauch J., Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer.Math.Soc, 291 (1985), pp 167–185. Zbl0549.35099MR797053
- Rousset F., Inviscid boundary conditions and stability of viscous boundary layers, Asympt.Anal., 26 (2001) pp 285–306. Zbl0977.35081MR1844545
- Rousset F., Viscous approximation of strong shocks of systems of conservation laws. SIAM J. Math. Anal. 35 (2003), pp 492–519. Zbl1052.35128MR2001110
- Shiota M., Nash Manifolds, Lectures Notes in Mathematics, 1269, Springer Verlag. Zbl0629.58002MR904479
- Serre D., Sur la stabilité des couches limites de viscosité. Ann. Inst. Fourier (Grenoble) 51 (2001), pp 109–130. Zbl0963.35009MR1821071
- Zumbrun K., Multidimensional stability of planar viscous shock waves. Advances in the theory of shock waves, 307–516, Progr. Nonlinear Differential Equations Appl., 47, Birkhäuser Boston, Boston, MA, 2001. Zbl0989.35089MR1842778
- Zumbrun K. Stability of large-amplitude shock waves of compressible Navier–Stokes equations. For Handbook of Fluid Mechanics III, S.Friedlander, D.Serre ed., Elsevier North Holland (2004). Zbl1222.35156MR2099037
- Zumbrun K. and Howard P., Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J., 47 (1998), pp 741–871. Zbl0928.35018MR1665788
- Zumbrun K. and Serre D., Viscous and inviscid stability of multidimensional planar shock fronts , Indiana Univ. Math. J., 48 (1999), pp 937–992. Zbl0944.76027MR1736972
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.