Resonances for Schrödinger operators with compactly supported potentials

T. J. Christiansen[1]; P. D. Hislop[2]

  • [1] Department of Mathematics , University of Missouri, Columbia, Missouri 65211 USA
  • [2] Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027, USA

Journées Équations aux dérivées partielles (2008)

  • page 1-18
  • ISSN: 0752-0360

Abstract

top
We describe the generic behavior of the resonance counting function for a Schrödinger operator with a bounded, compactly-supported real or complex valued potential in d 1 dimensions. This note contains a sketch of the proof of our main results [5, 6] that generically the order of growth of the resonance counting function is the maximal value d in the odd dimensional case, and that it is the maximal value d on each nonphysical sheet of the logarithmic Riemann surface in the even dimensional case. We include a review of previous results concerning the resonance counting functions for Schrödinger operators with compactly-supported potentials.

How to cite

top

Christiansen, T. J., and Hislop, P. D.. "Resonances for Schrödinger operators with compactly supported potentials." Journées Équations aux dérivées partielles (2008): 1-18. <http://eudml.org/doc/10635>.

@article{Christiansen2008,
abstract = {We describe the generic behavior of the resonance counting function for a Schrödinger operator with a bounded, compactly-supported real or complex valued potential in $d \ge 1$ dimensions. This note contains a sketch of the proof of our main results [5, 6] that generically the order of growth of the resonance counting function is the maximal value $d$ in the odd dimensional case, and that it is the maximal value $d$ on each nonphysical sheet of the logarithmic Riemann surface in the even dimensional case. We include a review of previous results concerning the resonance counting functions for Schrödinger operators with compactly-supported potentials.},
affiliation = {Department of Mathematics , University of Missouri, Columbia, Missouri 65211 USA; Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027, USA},
author = {Christiansen, T. J., Hislop, P. D.},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-18},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Resonances for Schrödinger operators with compactly supported potentials},
url = {http://eudml.org/doc/10635},
year = {2008},
}

TY - JOUR
AU - Christiansen, T. J.
AU - Hislop, P. D.
TI - Resonances for Schrödinger operators with compactly supported potentials
JO - Journées Équations aux dérivées partielles
DA - 2008/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 18
AB - We describe the generic behavior of the resonance counting function for a Schrödinger operator with a bounded, compactly-supported real or complex valued potential in $d \ge 1$ dimensions. This note contains a sketch of the proof of our main results [5, 6] that generically the order of growth of the resonance counting function is the maximal value $d$ in the odd dimensional case, and that it is the maximal value $d$ on each nonphysical sheet of the logarithmic Riemann surface in the even dimensional case. We include a review of previous results concerning the resonance counting functions for Schrödinger operators with compactly-supported potentials.
LA - eng
UR - http://eudml.org/doc/10635
ER -

References

top
  1. R. Bañuelos, A. Sá Barreto, On the heat trace of Schrödinger operators, Comm. Partial Differential Equations 20 (1995), no. 11-12, 2153–2164. Zbl0843.35016MR1361734
  2. T. Christiansen, Some lower bounds on the number of resonances in Euclidean scattering, Math. Res. Lett. 6 (1999), no. 2, 203–211. Zbl0947.35102MR1689210
  3. T. Christiansen, Several complex variables and the distribution of resonances for potential scattering, Commun. Math. Phys 259 (2005), 711-728. Zbl1088.81093MR2174422
  4. T. Christiansen, Schrödinger operators with complex-valued potentials and no resonances, Duke Math Journal 133, no. 2 (2006), 313-323. Zbl1107.35094MR2225694
  5. T. Christiansen and P. D. Hislop, The resonance counting function for Schrödinger operators with generic potentials, Math. Research Letters, 12 (6) (2005), 821-826. Zbl1155.35319MR2189242
  6. T. Christiansen and P. D. Hislop, Maximal order of growth for the resonance counting function for generic potentials in even dimensions, submitted, arXiv:0811.4761v1. Zbl1202.81199
  7. R. Froese, Asymptotic distribution of resonances in one dimension, J. Differential Equations 137 (1997), no. 2, 251–272. Zbl0955.35057MR1456597
  8. R. Froese, Upper bounds for the resonance counting function of Schrödinger operators in odd dimensions, Canad. J. Math. 50 (1998), no. 3, 538–546. Zbl0918.47005MR1629819
  9. A. Intissar, A polynomial bound on the number of the scattering poles for a potential in even dimensional spaces n , Comm. in Partial Diff. Eqns. 11, No. 4 (1986), 367–396. Zbl0607.35069MR829322
  10. P. D. Lax and R. S. Phillips, Decaying modes for the wave equation in the exterior of an obstacle, Comm. Pure Appl. Math. 22 (1969), 737–787. Zbl0181.38201MR254432
  11. P. Lelong and L. Gruman, Entire functions of several complex variables, Springer Verlag, Berlin, 1986. Zbl0583.32001MR837659
  12. G. P. Menzala, T. Schonbek, Scattering frequencies for the wave equation with a potential term, J. Funct. Anal. 55 (1984), 297–322. Zbl0536.35060MR734801
  13. R. B. Melrose, Polynomial bounds on the number of scattering poles, J. Funct. Anal. 53 (1983), 287–303. Zbl0535.35067MR724031
  14. R. B. Melrose, Geometric scattering theory, Cambridge University Press, 1995. Zbl0849.58071MR1350074
  15. R. G. Newton, Analytic properties of radial wave functions, J. Math. Phys. 1, no. 4, 319–347 (1960). Zbl0090.19303MR115692
  16. H. M. Nussenzveig, The poles of the S -matrix of a rectangular potential well or barrier, Nuclear Phys. 11 (1959), 499–521. 
  17. F. W. J. Olver, Asymptotics and Special Functions, Academic Press, San Deigo, 1974. Zbl0303.41035MR435697
  18. F. W. J. Olver, The asymptotic solution of linear differential equations of the second order for large values of a parameter, Phil. Trans. Royal Soc. London Ser. A 247, 307–327 (1954). Zbl0070.30801MR67249
  19. F. W. J. Olver, The asymptotic expansion of Bessel functions of large order, Phil. Trans. Royal Soc. London ser. A 247, 328–368 (1954). Zbl0070.30801MR67250
  20. T. Ransford, Potential theory in the complex plane, Cambridge University Press, Cambridge, 1995. Zbl0828.31001MR1334766
  21. T. Regge, Analytic properties of the scattering matrix, Il Nuovo Cimento 8 (1958), no. 10, 671–679. Zbl0080.41903MR95702
  22. A. Sá Barreto, Remarks on the distribution of resonances in odd dimensional Euclidean scattering, Asymptot. Anal. 27 (2001), no. 2, 161–170. Zbl1116.35344MR1852004
  23. A. Sá Barreto, Lower bounds for the number of resonances in even dimensional potential scattering, J. Funct. Anal. 169 (1999), 314–323. Zbl0939.35133MR1726757
  24. A. Sá Barreto, S.-H. Tang, Existence of resonances in even dimensional potential scattering, Commun. Part. Diff. Eqns. 25 (2000), no. 5-6, 1143–1151. Zbl0947.35101MR1759805
  25. A. Sá Barreto, M. Zworski, Existence of resonances in three dimensions, Comm. Math. Phys. 173 (1995), no. 2, 401–415. Zbl0835.35099MR1355631
  26. A. Sá Barreto, M. Zworski, Existence of resonances in potential scattering, Comm. Pure Appl. Math. 49 (1996), no. 12, 1271–1280. Zbl0877.35087MR1414586
  27. N. Shenk, D. Thoe, Resonant states and poles of the scattering matrix for perturbations of - Δ , J. Math. Anal. Appl. 37 (1972), 467–491. Zbl0229.35072MR308616
  28. B. Simon, Resonances in one dimension and Fredholm determinants, J. Funct. Anal. 178 (2000), no. 2, 396–420. Zbl0977.34075MR1802901
  29. B. Simon, Trace Ideals and their Applications, London Mathematical Society Lecture Note Series 35, Cambridge University Press, 1979; second edition, American Mathematical Society, Providence RI, 2005. Zbl0423.47001MR2154153
  30. B. Simon, Operators with singular continuous spectrum: I. general operators, Ann. Math. 141 (1995), 131–145. Zbl0851.47003MR1314033
  31. J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J. 60 (1990), no. 1, 1–57. Zbl0702.35188MR1047116
  32. J. Sjöstrand, M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4(1991), no. 4, 729–769. Zbl0752.35046MR1115789
  33. P. Stefanov, Sharp bounds on the number of the scattering poles, J. Func. Anal., 231 (1) (2006), 111–142. Zbl1099.35074MR2190165
  34. A. Vasy, Scattering poles for negative potentials, Comm. Partial Differential Equations 22 (1997), no. 1-2, 185–194 Zbl0884.35109MR1434143
  35. G. Vodev, Sharp polynomial bounds on the number of scattering poles for perturbations of the Laplacian, Commun. Math. Phys. 146 (1992), 39–49. Zbl0754.35105MR1163673
  36. G. Vodev, Sharp bounds on the number of scattering poles in even-dimensional spaces, Duke Math. J. 74 (1) (1994), 1–17. Zbl0813.35075MR1271461
  37. G. Vodev, Sharp bounds on the number of scattering poles in the two-dimensional case, Math. Nachr. 170 (1994), 287–297. Zbl0829.35091MR1302380
  38. G. Vodev, Resonances in Euclidean scattering, Cubo Matemática Educacional 3 No. 1, Enero 2001, 319–360. Zbl1075.35024
  39. G. N. Watson, Treatise on the theory of Bessel functions, Cambridge University Press, 1966. Zbl0174.36202
  40. D. Yafaev, Mathematical scattering theory. General theory, translated from the Russian by J. R. Schulenberger, Translations of Mathematical Monographs, 105, American Mathematical Society, Providence, RI, 1992 Zbl0761.47001MR1180965
  41. M. Zworski, Sharp polynomial poles on the number of scattering poles, Duke Math. J. 59 (1989), 311–323. Zbl0705.35099MR1016891
  42. M. Zworski, Distribution of poles for scattering on the real line, J. Funct. Anal. 73 (1987), 277–296. Zbl0662.34033MR899652
  43. M. Zworski, Sharp polynomial bounds on the number of scattering poles of radial potentials, J. Funct. Anal. 82 (1989), 370–403. Zbl0681.47002MR987299
  44. M. Zworski, Poisson formulae for resonances, Séminaire sur les Equations aux Dérivées Partielles, 1996–1997, Exp. No. XIII, 14 pp., Ecole Polytech., Palaiseau, 1997 Seminaire Ecole Polytechnique. Zbl1255.35084MR1482819
  45. M. Zworski, Counting scattering poles, In: Spectral and scattering theory (Sanda, 1992), 301–331, Lectures in Pure and Appl. Math. 161, New York: Dekker, 1994. Zbl0823.35139MR1291649

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.