Resonances for Schrödinger operators with compactly supported potentials
T. J. Christiansen[1]; P. D. Hislop[2]
- [1] Department of Mathematics , University of Missouri, Columbia, Missouri 65211 USA
- [2] Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027, USA
Journées Équations aux dérivées partielles (2008)
- page 1-18
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topChristiansen, T. J., and Hislop, P. D.. "Resonances for Schrödinger operators with compactly supported potentials." Journées Équations aux dérivées partielles (2008): 1-18. <http://eudml.org/doc/10635>.
@article{Christiansen2008,
abstract = {We describe the generic behavior of the resonance counting function for a Schrödinger operator with a bounded, compactly-supported real or complex valued potential in $d \ge 1$ dimensions. This note contains a sketch of the proof of our main results [5, 6] that generically the order of growth of the resonance counting function is the maximal value $d$ in the odd dimensional case, and that it is the maximal value $d$ on each nonphysical sheet of the logarithmic Riemann surface in the even dimensional case. We include a review of previous results concerning the resonance counting functions for Schrödinger operators with compactly-supported potentials.},
affiliation = {Department of Mathematics , University of Missouri, Columbia, Missouri 65211 USA; Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027, USA},
author = {Christiansen, T. J., Hislop, P. D.},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-18},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Resonances for Schrödinger operators with compactly supported potentials},
url = {http://eudml.org/doc/10635},
year = {2008},
}
TY - JOUR
AU - Christiansen, T. J.
AU - Hislop, P. D.
TI - Resonances for Schrödinger operators with compactly supported potentials
JO - Journées Équations aux dérivées partielles
DA - 2008/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 18
AB - We describe the generic behavior of the resonance counting function for a Schrödinger operator with a bounded, compactly-supported real or complex valued potential in $d \ge 1$ dimensions. This note contains a sketch of the proof of our main results [5, 6] that generically the order of growth of the resonance counting function is the maximal value $d$ in the odd dimensional case, and that it is the maximal value $d$ on each nonphysical sheet of the logarithmic Riemann surface in the even dimensional case. We include a review of previous results concerning the resonance counting functions for Schrödinger operators with compactly-supported potentials.
LA - eng
UR - http://eudml.org/doc/10635
ER -
References
top- R. Bañuelos, A. Sá Barreto, On the heat trace of Schrödinger operators, Comm. Partial Differential Equations 20 (1995), no. 11-12, 2153–2164. Zbl0843.35016MR1361734
- T. Christiansen, Some lower bounds on the number of resonances in Euclidean scattering, Math. Res. Lett. 6 (1999), no. 2, 203–211. Zbl0947.35102MR1689210
- T. Christiansen, Several complex variables and the distribution of resonances for potential scattering, Commun. Math. Phys 259 (2005), 711-728. Zbl1088.81093MR2174422
- T. Christiansen, Schrödinger operators with complex-valued potentials and no resonances, Duke Math Journal 133, no. 2 (2006), 313-323. Zbl1107.35094MR2225694
- T. Christiansen and P. D. Hislop, The resonance counting function for Schrödinger operators with generic potentials, Math. Research Letters, 12 (6) (2005), 821-826. Zbl1155.35319MR2189242
- T. Christiansen and P. D. Hislop, Maximal order of growth for the resonance counting function for generic potentials in even dimensions, submitted, arXiv:0811.4761v1. Zbl1202.81199
- R. Froese, Asymptotic distribution of resonances in one dimension, J. Differential Equations 137 (1997), no. 2, 251–272. Zbl0955.35057MR1456597
- R. Froese, Upper bounds for the resonance counting function of Schrödinger operators in odd dimensions, Canad. J. Math. 50 (1998), no. 3, 538–546. Zbl0918.47005MR1629819
- A. Intissar, A polynomial bound on the number of the scattering poles for a potential in even dimensional spaces , Comm. in Partial Diff. Eqns. 11, No. 4 (1986), 367–396. Zbl0607.35069MR829322
- P. D. Lax and R. S. Phillips, Decaying modes for the wave equation in the exterior of an obstacle, Comm. Pure Appl. Math. 22 (1969), 737–787. Zbl0181.38201MR254432
- P. Lelong and L. Gruman, Entire functions of several complex variables, Springer Verlag, Berlin, 1986. Zbl0583.32001MR837659
- G. P. Menzala, T. Schonbek, Scattering frequencies for the wave equation with a potential term, J. Funct. Anal. 55 (1984), 297–322. Zbl0536.35060MR734801
- R. B. Melrose, Polynomial bounds on the number of scattering poles, J. Funct. Anal. 53 (1983), 287–303. Zbl0535.35067MR724031
- R. B. Melrose, Geometric scattering theory, Cambridge University Press, 1995. Zbl0849.58071MR1350074
- R. G. Newton, Analytic properties of radial wave functions, J. Math. Phys. 1, no. 4, 319–347 (1960). Zbl0090.19303MR115692
- H. M. Nussenzveig, The poles of the -matrix of a rectangular potential well or barrier, Nuclear Phys. 11 (1959), 499–521.
- F. W. J. Olver, Asymptotics and Special Functions, Academic Press, San Deigo, 1974. Zbl0303.41035MR435697
- F. W. J. Olver, The asymptotic solution of linear differential equations of the second order for large values of a parameter, Phil. Trans. Royal Soc. London Ser. A 247, 307–327 (1954). Zbl0070.30801MR67249
- F. W. J. Olver, The asymptotic expansion of Bessel functions of large order, Phil. Trans. Royal Soc. London ser. A 247, 328–368 (1954). Zbl0070.30801MR67250
- T. Ransford, Potential theory in the complex plane, Cambridge University Press, Cambridge, 1995. Zbl0828.31001MR1334766
- T. Regge, Analytic properties of the scattering matrix, Il Nuovo Cimento 8 (1958), no. 10, 671–679. Zbl0080.41903MR95702
- A. Sá Barreto, Remarks on the distribution of resonances in odd dimensional Euclidean scattering, Asymptot. Anal. 27 (2001), no. 2, 161–170. Zbl1116.35344MR1852004
- A. Sá Barreto, Lower bounds for the number of resonances in even dimensional potential scattering, J. Funct. Anal. 169 (1999), 314–323. Zbl0939.35133MR1726757
- A. Sá Barreto, S.-H. Tang, Existence of resonances in even dimensional potential scattering, Commun. Part. Diff. Eqns. 25 (2000), no. 5-6, 1143–1151. Zbl0947.35101MR1759805
- A. Sá Barreto, M. Zworski, Existence of resonances in three dimensions, Comm. Math. Phys. 173 (1995), no. 2, 401–415. Zbl0835.35099MR1355631
- A. Sá Barreto, M. Zworski, Existence of resonances in potential scattering, Comm. Pure Appl. Math. 49 (1996), no. 12, 1271–1280. Zbl0877.35087MR1414586
- N. Shenk, D. Thoe, Resonant states and poles of the scattering matrix for perturbations of , J. Math. Anal. Appl. 37 (1972), 467–491. Zbl0229.35072MR308616
- B. Simon, Resonances in one dimension and Fredholm determinants, J. Funct. Anal. 178 (2000), no. 2, 396–420. Zbl0977.34075MR1802901
- B. Simon, Trace Ideals and their Applications, London Mathematical Society Lecture Note Series 35, Cambridge University Press, 1979; second edition, American Mathematical Society, Providence RI, 2005. Zbl0423.47001MR2154153
- B. Simon, Operators with singular continuous spectrum: I. general operators, Ann. Math. 141 (1995), 131–145. Zbl0851.47003MR1314033
- J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J. 60 (1990), no. 1, 1–57. Zbl0702.35188MR1047116
- J. Sjöstrand, M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4(1991), no. 4, 729–769. Zbl0752.35046MR1115789
- P. Stefanov, Sharp bounds on the number of the scattering poles, J. Func. Anal., 231 (1) (2006), 111–142. Zbl1099.35074MR2190165
- A. Vasy, Scattering poles for negative potentials, Comm. Partial Differential Equations 22 (1997), no. 1-2, 185–194 Zbl0884.35109MR1434143
- G. Vodev, Sharp polynomial bounds on the number of scattering poles for perturbations of the Laplacian, Commun. Math. Phys. 146 (1992), 39–49. Zbl0754.35105MR1163673
- G. Vodev, Sharp bounds on the number of scattering poles in even-dimensional spaces, Duke Math. J. 74 (1) (1994), 1–17. Zbl0813.35075MR1271461
- G. Vodev, Sharp bounds on the number of scattering poles in the two-dimensional case, Math. Nachr. 170 (1994), 287–297. Zbl0829.35091MR1302380
- G. Vodev, Resonances in Euclidean scattering, Cubo Matemática Educacional 3 No. 1, Enero 2001, 319–360. Zbl1075.35024
- G. N. Watson, Treatise on the theory of Bessel functions, Cambridge University Press, 1966. Zbl0174.36202
- D. Yafaev, Mathematical scattering theory. General theory, translated from the Russian by J. R. Schulenberger, Translations of Mathematical Monographs, 105, American Mathematical Society, Providence, RI, 1992 Zbl0761.47001MR1180965
- M. Zworski, Sharp polynomial poles on the number of scattering poles, Duke Math. J. 59 (1989), 311–323. Zbl0705.35099MR1016891
- M. Zworski, Distribution of poles for scattering on the real line, J. Funct. Anal. 73 (1987), 277–296. Zbl0662.34033MR899652
- M. Zworski, Sharp polynomial bounds on the number of scattering poles of radial potentials, J. Funct. Anal. 82 (1989), 370–403. Zbl0681.47002MR987299
- M. Zworski, Poisson formulae for resonances, Séminaire sur les Equations aux Dérivées Partielles, 1996–1997, Exp. No. XIII, 14 pp., Ecole Polytech., Palaiseau, 1997 Seminaire Ecole Polytechnique. Zbl1255.35084MR1482819
- M. Zworski, Counting scattering poles, In: Spectral and scattering theory (Sanda, 1992), 301–331, Lectures in Pure and Appl. Math. 161, New York: Dekker, 1994. Zbl0823.35139MR1291649
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.