Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in IRn.
Mathematische Annalen (1991)
- Volume: 291, Issue: 1, page 39-50
- ISSN: 0025-5831; 1432-1807/e
Access Full Article
topHow to cite
topVodev, Georgi. "Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in IRn.." Mathematische Annalen 291.1 (1991): 39-50. <http://eudml.org/doc/164848>.
@article{Vodev1991,
author = {Vodev, Georgi},
journal = {Mathematische Annalen},
keywords = {Laplace-Beltrami operator},
number = {1},
pages = {39-50},
title = {Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in IRn.},
url = {http://eudml.org/doc/164848},
volume = {291},
year = {1991},
}
TY - JOUR
AU - Vodev, Georgi
TI - Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in IRn.
JO - Mathematische Annalen
PY - 1991
VL - 291
IS - 1
SP - 39
EP - 50
KW - Laplace-Beltrami operator
UR - http://eudml.org/doc/164848
ER -
Citations in EuDML Documents
top- J. Sjöstrand, Nouvelles majorations sur le nombre de pôles près de l'axe réel pour des obstacles strictement convexes (d'après un travail avec M. Zworski)
- Georgi Vodev, Sharp bounds for the number of the scattering poles
- T. J. Christiansen, P. D. Hislop, Resonances for Schrödinger operators with compactly supported potentials
- Plamen Stefanov, Weyl type upper bounds on the number of resonances near the real axis for trapped systems
- Georgi Vodev, On the distribution of scattering poles for perturbations of the Laplacian
- G. Vodev, Sharp bounds on the number of resonances for symmetric systems
- Maciej Zworski, Poisson formulæ for resonances.
- L. S. Farhy, V. V. Tsanov, Scattering poles for connected sums of euclidean space and Zoll manifolds
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.