Poisson formulæ for resonances.

Maciej Zworski[1]

  • [1] Department of Mathematics, University of Toronto, and Centre de Mathématiques, École Polytechnique

Séminaire Équations aux dérivées partielles (1996-1997)

  • Volume: 1996-1997, page 1-12

How to cite

top

Zworski, Maciej. "Poisson formulæ for resonances.." Séminaire Équations aux dérivées partielles 1996-1997 (1996-1997): 1-12. <http://eudml.org/doc/10917>.

@article{Zworski1996-1997,
affiliation = {Department of Mathematics, University of Toronto, and Centre de Mathématiques, École Polytechnique},
author = {Zworski, Maciej},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Poisson formulæ for resonances.},
url = {http://eudml.org/doc/10917},
volume = {1996-1997},
year = {1996-1997},
}

TY - JOUR
AU - Zworski, Maciej
TI - Poisson formulæ for resonances.
JO - Séminaire Équations aux dérivées partielles
PY - 1996-1997
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1996-1997
SP - 1
EP - 12
LA - eng
UR - http://eudml.org/doc/10917
ER -

References

top
  1. Sh. Agmon. A perturbation theory for resonances, Journées “Équations aux Dérivées partielles”, Saint-Jean de Monts, 1996. Zbl0902.47007
  2. R. Bañuelos and A. Sá Barreto. On the heat trace of Schrödinger operators, Comm. Partial Differ. Equations 20 (1995), 2153-2164. Zbl0843.35016MR1361734
  3. C. Bardos, J.-C. Guillot and J.V. Ralston. La relation de Poisson pour l’équation des ondes dans un ouvert non borné, Commun. Partial Differ. Equations 7 (1982), 905–958. Zbl0496.35067
  4. V. Buslaev. Scattering plane waves, spectral asymptotics and trace formulas in exterior problems, Dokl. Akad. Nauk SSSR, 197 (1971), 999–1002. Zbl0224.47023MR278108
  5. I. C. Gohberg and M. G. Krein. Introduction to the theory of linear nonselfadjoint operators, Translations of mathematical monographs 18, American Mathematical Society, Providence, 1969. Zbl0181.13504MR246142
  6. L. Guillopé. Asymptotique de la phase de diffusion pour l’opérateur de Schrödinger avec potentiel, C.R. Acad. Sci., Paris, Ser.I 293(1981), 601-603. Zbl0487.35073
  7. L. Guillopé and M. Zworski. Upper bounds on the number of resonances for non-compact Riemann surfaces, J. Funct. Anal. 129 (1995), 364–389. Zbl0841.58063MR1327183
  8. L. Guillopé and M. Zworski. Scattering asymptotics for Riemann surfaces, to appear in Ann. of Math. Zbl0898.58054MR1454705
  9. L. Hörmander. The analysis of linear partial differential operators II, Springer Verlag, Berlin, 1983. Zbl1062.35004MR705278
  10. F. Klopp and M. Zworski. Generic simplicity of resonances, Helv.Phys. Acta. 68(1995), 531–538. Zbl0844.47040MR1395259
  11. P. Lax and R. Phillips. Decaying modes for the wave equation in the exterior of an obstacle. Comm. Pure App. Math. 22 (1969), 737–787. Zbl0181.38201MR254432
  12. P. Lax and R. Phillips. The time delay operator and a related trace formula. in Topics in Functional Analysis. Advances in Math. Suppl. Studies 3 (1978), 197–295. Zbl0463.47006MR538021
  13. R.B. Melrose. Scattering theory and the trace of the wave group, J. Func. Anal. 45 (1982), 429–440. Zbl0525.47007MR645644
  14. R.B. Melrose. Polynomial bounds on the number of scattering poles, J. Funct. Anal. 53 (1983), 287–303. Zbl0535.35067MR724031
  15. R.B. Melrose. Polynomial bounds on the distribution of poles in scattering by an obstacle, Journées “Équations aux Dérivées partielles”, Saint-Jean de Monts, 1984. Zbl0621.35073
  16. R.B. Melrose. Weyl asymptotics for the phase in obstacle scattering, Commun. Partial Diff. Equations 13(1988), 1431-1439. Zbl0686.35089MR956828
  17. R.B. Melrose. Geometric scattering theory, Cambridge University Press, Cambridge, New York, Melbourne, 1995. Zbl0849.58071MR1350074
  18. R.B. Melrose and M. Zworski. Scattering metrics and geodesic flow at infinity, Invent. Math. 124(1996), 389–436. Zbl0855.58058MR1369423
  19. G. Perla-Menzala and T. Schonbek. Scattering frequencies for the wave equation with potential term, J. Funct. Anal. 55(1984), 297-322. Zbl0536.35060MR734801
  20. W. Müller. Spectral geometry and scattering theory for certain complete surfaces of finite volume, Invent. Math. 109 (1992), 265–305. Zbl0772.58063MR1172692
  21. A. Sá Barreto and Siu-Hung Tang. Existence of resonances in metric scattering, in preparation. Zbl0912.35117
  22. A. Sá Barreto and M. Zworski. Existence of resonances in three dimensions, Comm. Math. Phys. 173(2) (1995), 401–415. Zbl0835.35099MR1355631
  23. A. Sá Barreto and M. Zworski. Existence of resonances in potential scattering, Comm. Pure Appl. Math. 49(1996), 1271-1280. Zbl0877.35087MR1414586
  24. J. Sjöstrand. A trace formula and review of some estimates for resonances, Publications du Centre de Mathématiques de l’École Polytechnique No.1153, Octobre, 1996. Zbl0877.35090
  25. J. Sjöstrand. A trace formula for resonances and application to semi-classical Schrödinger operators, Séminaire EDP, École Polytechnique, Novembre, 1996. Zbl1061.35506MR1482808
  26. J. Sjöstrand and M. Zworski. Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), 729–769. Zbl0752.35046MR1115789
  27. J. Sjöstrand and M. Zworski. Lower bounds on the number of scattering poles II, J. Funct. Anal. 123 (1994), 336–367. Zbl0823.35137MR1283032
  28. E. C. Titchmarsh, The theory of functions, Oxford University Press, 1939 Zbl0022.14602
  29. G. Vodev. Sharp polynomial bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys. 146 (1992), 39–49. Zbl0766.35032MR1163673
  30. G. Vodev. Asymptotics of scattering poles for degenerate perturbations of the Laplacian, J. Funct. Anal. 138 (1996), 295-310. Zbl0862.35082MR1395960
  31. M. Zworski. Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 (1989), 311–323. Zbl0705.35099MR1016891
  32. M. Zworski. A remark on isopolar potentials, unpublished note. Zbl0988.34067MR1856251
  33. M. Zworski. Counting scattering poles., Proceedings of the Taniguchi International Workshop Spectral and scattering theory, M. Ikawa Ed., Marcel Dekker, New York, Basel, Hong Kong, 1994. Zbl0823.35139MR1291635

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.