Around the bounded curvature conjecture in general relativity
Sergiu Klainerman[1]; Igor Rodnianski[1]; Jeremie Szeftel[2]
- [1] Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000 USA
- [2] Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000 USA and Mathématiques Appliquées de Bordeaux, UMR CNRS 5466, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence cedex FRANCE
Journées Équations aux dérivées partielles (2008)
- Volume: 202, Issue: 1, page 1-15
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topKlainerman, Sergiu, Rodnianski, Igor, and Szeftel, Jeremie. "Around the bounded $L^2$ curvature conjecture in general relativity." Journées Équations aux dérivées partielles 202.1 (2008): 1-15. <http://eudml.org/doc/10641>.
@article{Klainerman2008,
abstract = {We report on recent progress obtained on the construction and control of a parametrix to the homogeneous wave equation $\square _\{\bf g\} \phi =0$, where $\gg $ is a rough metric satisfying the Einstein vacuum equations. Controlling such a parametrix as well as its error term when one only assumes $L^2$ bounds on the curvature tensor $\{\bf R\}$ of $\gg $ is a major step towards the proof of the bounded $L^2$ curvature conjecture.},
affiliation = {Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000 USA; Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000 USA; Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000 USA and Mathématiques Appliquées de Bordeaux, UMR CNRS 5466, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence cedex FRANCE},
author = {Klainerman, Sergiu, Rodnianski, Igor, Szeftel, Jeremie},
journal = {Journées Équations aux dérivées partielles},
keywords = {Einstein vacuum equations; curvature bounds; causal geometry; quasilinear hyperbolic systems; radius of injectivity},
language = {eng},
month = {6},
number = {1},
pages = {1-15},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Around the bounded $L^2$ curvature conjecture in general relativity},
url = {http://eudml.org/doc/10641},
volume = {202},
year = {2008},
}
TY - JOUR
AU - Klainerman, Sergiu
AU - Rodnianski, Igor
AU - Szeftel, Jeremie
TI - Around the bounded $L^2$ curvature conjecture in general relativity
JO - Journées Équations aux dérivées partielles
DA - 2008/6//
PB - Groupement de recherche 2434 du CNRS
VL - 202
IS - 1
SP - 1
EP - 15
AB - We report on recent progress obtained on the construction and control of a parametrix to the homogeneous wave equation $\square _{\bf g} \phi =0$, where $\gg $ is a rough metric satisfying the Einstein vacuum equations. Controlling such a parametrix as well as its error term when one only assumes $L^2$ bounds on the curvature tensor ${\bf R}$ of $\gg $ is a major step towards the proof of the bounded $L^2$ curvature conjecture.
LA - eng
KW - Einstein vacuum equations; curvature bounds; causal geometry; quasilinear hyperbolic systems; radius of injectivity
UR - http://eudml.org/doc/10641
ER -
References
top- Hajer Bahouri, Jean-Yves Chemin, Équations d’ondes quasilinéaires et effet dispersif, Internat. Math. Res. Notices (1999), 1141-1178 Zbl0938.35106MR1728676
- Hajer Bahouri, Jean-Yves Chemin, Équations d’ondes quasilinéaires et estimations de Strichartz, Amer. J. Math. 121 (1999), 1337-1377 Zbl0952.35073MR1719798
- Robert Bartnik, Existence of maximal surfaces in asymptotically flat spacetimes, Comm. Math. Phys. 94 (1984), 155-175 Zbl0548.53054MR761792
- Demetrios Christodoulou, Sergiu Klainerman, The global nonlinear stability of the Minkowski space, 41 (1993), Princeton University Press, Princeton, NJ Zbl0827.53055MR1316662
- Y. Fourès-Bruhat, Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math. 88 (1952), 141-225 Zbl0049.19201MR53338
- Thomas J. R. Hughes, Tosio Kato, Jerrold E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal. 63 (1976), 273-294 (1977) Zbl0361.35046MR420024
- S. Klainerman, M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), 1221-1268 Zbl0803.35095MR1231427
- S. Klainerman, M. Machedon, Estimates for null forms and the spaces , Internat. Math. Res. Notices (1996), 853-865 Zbl0909.35095MR1420552
- S. Klainerman, I. Rodnianski, Improved local well-posedness for quasilinear wave equations in dimension three, Duke Math. J. 117 (2003), 1-124 Zbl1031.35091MR1962783
- S. Klainerman, I. Rodnianski, A geometric approach to the Littlewood-Paley theory, Geom. Funct. Anal. 16 (2006), 126-163 Zbl1206.35080MR2221254
- S. Klainerman, I. Rodnianski, Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux, Geom. Funct. Anal. 16 (2006), 164-229 Zbl1206.35081MR2221255
- Sergiu Klainerman, PDE as a unified subject, Geom. Funct. Anal. (2000), 279-315 Zbl1002.35002MR1826256
- Sergiu Klainerman, Igor Rodnianski, Ricci defects of microlocalized Einstein metrics, J. Hyperbolic Differ. Equ. 1 (2004), 85-113 Zbl1063.53051MR2052472
- Sergiu Klainerman, Igor Rodnianski, Bilinear estimates on curved space-times, J. Hyperbolic Differ. Equ. 2 (2005), 279-291 Zbl1284.58018MR2151111
- Sergiu Klainerman, Igor Rodnianski, Causal geometry of Einstein-vacuum spacetimes with finite curvature flux, Invent. Math. 159 (2005), 437-529 Zbl1136.58018MR2125732
- Sergiu Klainerman, Igor Rodnianski, The causal structure of microlocalized rough Einstein metrics, Ann. of Math. (2) 161 (2005), 1195-1243 Zbl1089.83007MR2180401
- Sergiu Klainerman, Igor Rodnianski, Rough solutions of the Einstein-vacuum equations, Ann. of Math. (2) 161 (2005), 1143-1193 Zbl1089.83006MR2180400
- Hans Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math. 118 (1996), 1-16 Zbl0855.35080MR1375301
- Gustavo Ponce, Thomas C. Sideris, Local regularity of nonlinear wave equations in three space dimensions, Comm. Partial Differential Equations 18 (1993), 169-177 Zbl0803.35096MR1211729
- Hart F. Smith, A parametrix construction for wave equations with coefficients, Ann. Inst. Fourier (Grenoble) 48 (1998), 797-835 Zbl0974.35068MR1644105
- Hart F. Smith, Christopher D. Sogge, On Strichartz and eigenfunction estimates for low regularity metrics, Math. Res. Lett. 1 (1994), 729-737 Zbl0832.35018MR1306017
- Hart F. Smith, Daniel Tataru, Sharp local well-posedness results for the nonlinear wave equation, Ann. of Math. (2) 162 (2005), 291-366 Zbl1098.35113MR2178963
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, 43 (1993), Princeton University Press, Princeton, NJ Zbl0821.42001MR1232192
- Daniel Tataru, Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math. 122 (2000), 349-376 Zbl0959.35125MR1749052
- Daniel Tataru, Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III, J. Amer. Math. Soc. 15 (2002), 419-442 (electronic) Zbl0990.35027MR1887639
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.