Around the bounded L 2 curvature conjecture in general relativity

Sergiu Klainerman[1]; Igor Rodnianski[1]; Jeremie Szeftel[2]

  • [1] Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000 USA
  • [2] Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000 USA and Mathématiques Appliquées de Bordeaux, UMR CNRS 5466, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence cedex FRANCE

Journées Équations aux dérivées partielles (2008)

  • Volume: 202, Issue: 1, page 1-15
  • ISSN: 0752-0360

Abstract

top
We report on recent progress obtained on the construction and control of a parametrix to the homogeneous wave equation g φ = 0 , where is a rough metric satisfying the Einstein vacuum equations. Controlling such a parametrix as well as its error term when one only assumes L 2 bounds on the curvature tensor R of is a major step towards the proof of the bounded L 2 curvature conjecture.

How to cite

top

Klainerman, Sergiu, Rodnianski, Igor, and Szeftel, Jeremie. "Around the bounded $L^2$ curvature conjecture in general relativity." Journées Équations aux dérivées partielles 202.1 (2008): 1-15. <http://eudml.org/doc/10641>.

@article{Klainerman2008,
abstract = {We report on recent progress obtained on the construction and control of a parametrix to the homogeneous wave equation $\square _\{\bf g\} \phi =0$, where $\gg $ is a rough metric satisfying the Einstein vacuum equations. Controlling such a parametrix as well as its error term when one only assumes $L^2$ bounds on the curvature tensor $\{\bf R\}$ of $\gg $ is a major step towards the proof of the bounded $L^2$ curvature conjecture.},
affiliation = {Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000 USA; Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000 USA; Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000 USA and Mathématiques Appliquées de Bordeaux, UMR CNRS 5466, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence cedex FRANCE},
author = {Klainerman, Sergiu, Rodnianski, Igor, Szeftel, Jeremie},
journal = {Journées Équations aux dérivées partielles},
keywords = {Einstein vacuum equations; curvature bounds; causal geometry; quasilinear hyperbolic systems; radius of injectivity},
language = {eng},
month = {6},
number = {1},
pages = {1-15},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Around the bounded $L^2$ curvature conjecture in general relativity},
url = {http://eudml.org/doc/10641},
volume = {202},
year = {2008},
}

TY - JOUR
AU - Klainerman, Sergiu
AU - Rodnianski, Igor
AU - Szeftel, Jeremie
TI - Around the bounded $L^2$ curvature conjecture in general relativity
JO - Journées Équations aux dérivées partielles
DA - 2008/6//
PB - Groupement de recherche 2434 du CNRS
VL - 202
IS - 1
SP - 1
EP - 15
AB - We report on recent progress obtained on the construction and control of a parametrix to the homogeneous wave equation $\square _{\bf g} \phi =0$, where $\gg $ is a rough metric satisfying the Einstein vacuum equations. Controlling such a parametrix as well as its error term when one only assumes $L^2$ bounds on the curvature tensor ${\bf R}$ of $\gg $ is a major step towards the proof of the bounded $L^2$ curvature conjecture.
LA - eng
KW - Einstein vacuum equations; curvature bounds; causal geometry; quasilinear hyperbolic systems; radius of injectivity
UR - http://eudml.org/doc/10641
ER -

References

top
  1. Hajer Bahouri, Jean-Yves Chemin, Équations d’ondes quasilinéaires et effet dispersif, Internat. Math. Res. Notices (1999), 1141-1178 Zbl0938.35106MR1728676
  2. Hajer Bahouri, Jean-Yves Chemin, Équations d’ondes quasilinéaires et estimations de Strichartz, Amer. J. Math. 121 (1999), 1337-1377 Zbl0952.35073MR1719798
  3. Robert Bartnik, Existence of maximal surfaces in asymptotically flat spacetimes, Comm. Math. Phys. 94 (1984), 155-175 Zbl0548.53054MR761792
  4. Demetrios Christodoulou, Sergiu Klainerman, The global nonlinear stability of the Minkowski space, 41 (1993), Princeton University Press, Princeton, NJ Zbl0827.53055MR1316662
  5. Y. Fourès-Bruhat, Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math. 88 (1952), 141-225 Zbl0049.19201MR53338
  6. Thomas J. R. Hughes, Tosio Kato, Jerrold E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal. 63 (1976), 273-294 (1977) Zbl0361.35046MR420024
  7. S. Klainerman, M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), 1221-1268 Zbl0803.35095MR1231427
  8. S. Klainerman, M. Machedon, Estimates for null forms and the spaces H s , δ , Internat. Math. Res. Notices (1996), 853-865 Zbl0909.35095MR1420552
  9. S. Klainerman, I. Rodnianski, Improved local well-posedness for quasilinear wave equations in dimension three, Duke Math. J. 117 (2003), 1-124 Zbl1031.35091MR1962783
  10. S. Klainerman, I. Rodnianski, A geometric approach to the Littlewood-Paley theory, Geom. Funct. Anal. 16 (2006), 126-163 Zbl1206.35080MR2221254
  11. S. Klainerman, I. Rodnianski, Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux, Geom. Funct. Anal. 16 (2006), 164-229 Zbl1206.35081MR2221255
  12. Sergiu Klainerman, PDE as a unified subject, Geom. Funct. Anal. (2000), 279-315 Zbl1002.35002MR1826256
  13. Sergiu Klainerman, Igor Rodnianski, Ricci defects of microlocalized Einstein metrics, J. Hyperbolic Differ. Equ. 1 (2004), 85-113 Zbl1063.53051MR2052472
  14. Sergiu Klainerman, Igor Rodnianski, Bilinear estimates on curved space-times, J. Hyperbolic Differ. Equ. 2 (2005), 279-291 Zbl1284.58018MR2151111
  15. Sergiu Klainerman, Igor Rodnianski, Causal geometry of Einstein-vacuum spacetimes with finite curvature flux, Invent. Math. 159 (2005), 437-529 Zbl1136.58018MR2125732
  16. Sergiu Klainerman, Igor Rodnianski, The causal structure of microlocalized rough Einstein metrics, Ann. of Math. (2) 161 (2005), 1195-1243 Zbl1089.83007MR2180401
  17. Sergiu Klainerman, Igor Rodnianski, Rough solutions of the Einstein-vacuum equations, Ann. of Math. (2) 161 (2005), 1143-1193 Zbl1089.83006MR2180400
  18. Hans Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math. 118 (1996), 1-16 Zbl0855.35080MR1375301
  19. Gustavo Ponce, Thomas C. Sideris, Local regularity of nonlinear wave equations in three space dimensions, Comm. Partial Differential Equations 18 (1993), 169-177 Zbl0803.35096MR1211729
  20. Hart F. Smith, A parametrix construction for wave equations with C 1 , 1 coefficients, Ann. Inst. Fourier (Grenoble) 48 (1998), 797-835 Zbl0974.35068MR1644105
  21. Hart F. Smith, Christopher D. Sogge, On Strichartz and eigenfunction estimates for low regularity metrics, Math. Res. Lett. 1 (1994), 729-737 Zbl0832.35018MR1306017
  22. Hart F. Smith, Daniel Tataru, Sharp local well-posedness results for the nonlinear wave equation, Ann. of Math. (2) 162 (2005), 291-366 Zbl1098.35113MR2178963
  23. Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, 43 (1993), Princeton University Press, Princeton, NJ Zbl0821.42001MR1232192
  24. Daniel Tataru, Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math. 122 (2000), 349-376 Zbl0959.35125MR1749052
  25. Daniel Tataru, Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III, J. Amer. Math. Soc. 15 (2002), 419-442 (electronic) Zbl0990.35027MR1887639

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.