Distributional boundary values in 𝔇 L p ' . III

Richard D. Carmichael

Rendiconti del Seminario Matematico della Università di Padova (1972)

  • Volume: 48, page 137-158
  • ISSN: 0041-8994

How to cite

top

Carmichael, Richard D.. "Distributional boundary values in $\mathfrak {D}^{\prime } _{L^p}$. III." Rendiconti del Seminario Matematico della Università di Padova 48 (1972): 137-158. <http://eudml.org/doc/107448>.

@article{Carmichael1972,
author = {Carmichael, Richard D.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {137-158},
publisher = {Seminario Matematico of the University of Padua},
title = {Distributional boundary values in $\mathfrak \{D\}^\{\prime \} _\{L^p\}$. III},
url = {http://eudml.org/doc/107448},
volume = {48},
year = {1972},
}

TY - JOUR
AU - Carmichael, Richard D.
TI - Distributional boundary values in $\mathfrak {D}^{\prime } _{L^p}$. III
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1972
PB - Seminario Matematico of the University of Padua
VL - 48
SP - 137
EP - 158
LA - eng
UR - http://eudml.org/doc/107448
ER -

References

top
  1. [1] Beltrami, E.J., and Wohlers, M.R.: Distributional Boundary Values of Functions Holomorphic in a Half Plane, J. Math. Mech.15 (1966), 137-145. Zbl0151.18301MR193246
  2. [2] Bochner, S.: Group Invarience of Cauchy's Formula in Several Variables, Annals of Math.45 (1944), 686-707. Zbl0060.24301MR11131
  3. [3] Bochner, S., and Martin, W.T.: Several Complex Variables, Princeton University Press, Princeton, N.J., 1948. Zbl0041.05205MR27863
  4. [4] Carmichael, Richard D.: Distributional Boundary Values of Functions Analytic in Tubular Radial Domains, Indiana U. Math. J. (formerly J. Math. Mech.) 20 (1971), 843-853. Zbl0207.12403MR414918
  5. [5] Carmichael, Richard D.: Distributional Boundary Values in D' Lp, Rendiconti Sem. Mat. Università di Padova43 (1970), 35-53. Zbl0235.46063MR278064
  6. [6] Carmichael, Richard D.: Distributional Boundary Values in D' Lp. II, Rendiconti Sem. Mat. Università di Padova45 (1971), 249-277. Zbl0229.46042MR301507
  7. [7] Carmichael, Richard D.: Functions Analytic in an Octant and Boundary Values of Distributions, J. Math. Analysis Appl.33 (1971), 616-626. Zbl0206.12502MR283566
  8. [8] Carmichael, Richard D.: Distributions as the Boundary Values of Analitic Functions, Proc. Japan Acad.45 (1969), 861-865. Zbl0198.46505MR262819
  9. [9] Carmichael, Richard D.: Generalized Cauchy and Poisson Integrals and Distributional Boundary Values, SIAM J. Math. Analysis (to appear). Zbl0225.46035MR350054
  10. [10] Carmichael, Richard D.: The Paley-Wiener-Schwartz Theorem for Functions Analytic in a Half Space, Ph. D. Thesis, Duke University, Durham, N.C., 1968. 
  11. [11] Hille, Einar, and Tamarkin, J.D.: On a Theorem of Paley and Wiener, Annals of Math.34 (1933), 606-614. Zbl0007.15703MR1503128JFM59.0424.01
  12. [12] Hille, Einar, and Tamarkin, J.D.: A Remark on Fourier Transforms and Functions Analytic in a Half Plane, Compositio Math.1 (1934), 98-102. Zbl0008.30602
  13. [13] Hille, Einar, and Tamarkin, J.D.: On the Absolute Integrability of Fourier Transforms, Fundamenta Math.25 (1935), 329-352. Zbl0012.25501
  14. [14] Korányi, Adam: A Poisson Integral for Homogeneous Wedge Domains, J. D'Analyse Math.14 (1965), 275-284. Zbl0138.06503MR179809
  15. [15] Schwartz, L.: Théorie Des Distributions, Hermann, Paris, 1966. Zbl0962.46025MR209834
  16. [16] Stein, E.M., Weiss, G., and Weiss, M.: Hp Classes of Holomorphic Functions in Tube Domains, Proc. Nat. Acad. Sciences U.S.A. 52 (1964), 1035-1039. Zbl0126.09405MR179386
  17. [17] Stein, E.M., and Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, N.J., 1971. Zbl0232.42007MR304972
  18. [18] Vladimirov, V.S.: Methods of the Theory of Functions of Several Complex Variables, M.I.T. Press, Cambridge, Mass., 1966. MR201669

NotesEmbed ?

top

You must be logged in to post comments.