Statistical study of Navier-Stokes equations, II
Rendiconti del Seminario Matematico della Università di Padova (1973)
- Volume: 49, page 9-123
- ISSN: 0041-8994
Access Full Article
topHow to cite
topFoias, C.. "Statistical study of Navier-Stokes equations, II." Rendiconti del Seminario Matematico della Università di Padova 49 (1973): 9-123. <http://eudml.org/doc/107479>.
@article{Foias1973,
author = {Foias, C.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {9-123},
publisher = {Seminario Matematico of the University of Padua},
title = {Statistical study of Navier-Stokes equations, II},
url = {http://eudml.org/doc/107479},
volume = {49},
year = {1973},
}
TY - JOUR
AU - Foias, C.
TI - Statistical study of Navier-Stokes equations, II
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1973
PB - Seminario Matematico of the University of Padua
VL - 49
SP - 9
EP - 123
LA - eng
UR - http://eudml.org/doc/107479
ER -
References
top- Agmon ( S.) [1] Lectures on Elliptic Boundary Value Problems, Van Nostrand, New York, 1965. Zbl0142.37401MR178246
- Bass ( J.) [1] Solutions turbulentes de certaines equations aux dérivées partielles, C. R. Acad. Sci. Paris, 249 (1959), 1456-1457. Zbl0086.40702MR107450
- [2] Surl'existence des solutions turbulentes des equations de l'hydrodynamique, C. R. Acad. Sci. Paris, 252 (1961), 3392-3394. Zbl0126.42803MR135371
- Batchelor ( G.K.) [1] The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge, 1967. Zbl0522.76051
- Bourbaki ( N.) [1]Intégration. Ch. 5: Intégration des mesures. Eléments de mathématiques, Hermann, Paris, 1967. Zbl0143.27101MR209424
- Cattabriga ( L.) [1] Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308-340. Zbl0116.18002MR138894
- Choquet ( G.) [1] Lectures on Analysis. Vol. II: Representation Theory, W. A. Benjamin, Inc., New York, 1969. Zbl0181.39602MR250012
- Dinculeanu ( N.) [1] Vector Measures, Pergamon Press, London, 1967. MR206190
- Doob ( J.L.) [1] Stochastic Processes, Wiley, New York, 1953. Zbl0053.26802MR58896
- Dubreil-Jacotin ( M.L.) [1] Sur le passage des équations de Navier-Stokes aux équations de Reynolds, C. R. Acad. Sci. Paris, 244 (1957), 2887-2890. Zbl0078.08402MR94053
- Dunford ( N.) - Schwartz ( J.T.) [1] Linear Operators. Part I: General Theory, Interscience Publ., New York, 1958. Zbl0084.10402MR1009162
- Foias ( C.) [1] Ergodic problems in functional spaces related to Navier-Stokes equations, Proceedings Intern. Conf. Funct. Anal. and Rel. Topics, Tokyo, April 1969, 290-304. Zbl0206.44701MR291885
- [2] Solutions statistiques des équations d'évolution non linéaires, C.I.M.E., Varenna, 1970. Zbl0241.35063
- Foias ( C.) - Prodi ( G.) [1] Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34. Zbl0176.54103MR223716
- Grisvard ( P.) [1] Le comportement asymptotique des valeurs propres d'un opérateur, Séminaire sur les Equations aux dérivées partielles, Collège de France, 1971, 4°, pp. 4.1-4.12.
- Hille ( E.) - Phillips ( R.S.) [1] Functional Analysis and Semi-Groups, Amer. Math. Soc. Coll. Publ., New York, 1957. Zbl0078.10004MR89373
- Hinze ( J.O.) [1] Turbulence. An Introduction and its Mechanism and Theory, McGraw-Hill, Inc., New York, 1959. MR105962
- Hopf ( E.) [1] A mathematical example displaying features of turbulence, Comm. Pure Appl. Math., 1 (1948), 303-322. Zbl0031.32901MR30113
- [2] Über die Anfangswertaufgabe für hydrodynamischen Grundgleichungen, Math. Nachrichten, 4 (1951), 2-13-231. Zbl0042.10604
- [3] Statistical hydrodynamics and functional calculus, J. Rat. Mech. Anal., 1 (1952), 87-123. Zbl0049.41704MR59119
- Hörmander ( L.) [1] Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963. Zbl0108.09301MR404822
- Hunt ( J.N.) [1] Incompressible Fluid Mechanics, Wiley, New York, 1964. MR207282
- Ionescu Tulcea ( A.) and (C. T.) [1] On the lifting property II, Journ. Math. Mech., 11 (1962), 773-795. Zbl0122.11701MR145350
- Jacobs ( K.) [1] Ergodic Theory, Aarhus Univ. Mat. Inst. Lect., Aarhus, 1963. MR159922
- Kampé De Fériet ( J.) [1] Statistical mechanics of continuous media, Proc. Symp. Appl. Math., XIII (1962). Zbl0108.42802MR141260
- Kolmogorov ( A.N.) - Tihomirov ( V.M.) [1] ε-entropy and ε-capacity of sets in functional spaces, Uspehi Mat. Nauk, 14 (1959), 3-86. Zbl0133.06703
- Krylov ( N.) - Bogoliubov ( N.N.) [1] La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire, Ann. of Math., 38 (1937), 65-113. Zbl0016.08604MR1503326JFM63.1002.01
- Kuratowski ( C.) [ 1] Topologie, vol. I, Panstw. Wyd. Nauk, Warszawa, 1958. Zbl0102.37602MR90795
- Ladyzenskay ( O.A.) [1] Global solution of the boundary problem for Navier-Stokes equations in two spatial dimensions, Doklady Acad. Nauk SSSR, 123 (1958), 427-429. Zbl0090.41502
- [2] The study of Navier-Stokes equations for stationary incompressible flows, Usp. Mat. Nauk, 14 (1959), 75-97. Zbl0127.31703
- [3] Mathematical Theory of Viscous Incompressible Flows, Gordon & Breach Sci. Publ., New York, 1963. MR155093
- Landau ( L.) - Lifshitz ( E.) [1] Mécanique des fluides, Physique Théorique, t. VI, Ed. Mir, Moscow, 1971.
- Leray ( J.) [1] Etude de divers équations intégrales non-linéaire et de quelques problèmes que posent l'hydrodynamique, J. Math. Pures et Appl., 9- série, 12 (1933), 1-82. Zbl0006.16702
- [2] Essai sur le mouvement plan d'un liquide visqueux que limitent des parois, Journ. Math. Pures et Appl., 9- série, 13 (1934), 331-418. Zbl60.0727.01JFM60.0727.01
- [3] Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248. MR1555394JFM60.0726.05
- Lions ( J.L.) [1] Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
- Lions ( J.L.) - Magenes ( E.) [1] Problèmes aux limites non homogènes et applications, vol. I, Dunod, Paris, 1968. Zbl0165.10801
- Lions ( J.L.) - Peetre ( J.) [1] Sur une classe d'espaces d'interpolation, Institut des Hautes Etudes Sc. Publ. Math., 19 (1964), 5-68. Zbl0148.11403MR165343
- Lions ( J.L.) - Prodi ( G.) [1] Un théoréme d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris, 250 (1959), 3519-3521. Zbl0091.42105MR108964
- Loève ( M.) [1]Probability Theory, Van Nostrand Corp. Inc., Princeton, 1960. Zbl0095.12201MR123342
- Loomis ( L.H.) [1] An Introduction to Abstract Harmonic Analysis, Van Nostrand Comp., Inc., New York, 1953. Zbl0052.11701MR54173
- Malkus ( W.V.R.) [1] Similarity arguments for fully developed turbulence, Suppl. at Nuovo Cimento, 22 (1961), serie X, 376-384.
- Masuda ( K.) [1] On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation, Proc. Japan. Acad., 43 (1967), 827-832. Zbl0204.26901MR247304
- Monin ( A.S.) - Yaglom ( A.M.) [1] Statistical Hydrodynamics. The Mechanics of Turbulence, Part I, Izd Nauka, Moscow, 1965.
- [2] Statistical Hydrodynamics. The Mechanics of Turbulence, Part II, Izd. Nauka, Moscow, 1967.
- Nelson ( E.) [1] Regular probability measures on function space, Annals of Math., 69 (1959), 630-643. Zbl0087.13102MR105743
- Nihoul ( J.C.J.) [1] A kinematic theory of M.H.D. turbulent shear flow (A new approach to the Malkus theory of turbulence), Revue Roum. Math. pures et appl., 12 (1967), 1503-1514. Zbl0148.45901
- Obukov ( A.M.) [1] Statistical description of continuous fields, Proc. Geod. Inst. Akad. Nauk SSSR, 1954, no. 24 (151), 3-42. MR67404
- Prodi ( G.) [1] Un teorema di unicità per le equazioni di Navier-Stokes, Annali di Mat. pura e appl., (IV), 48 (1959), 173-182. Zbl0148.08202MR126088
- [2] Qualche risultato riguardo alle equazioni di Navier-Stokes nel caso bidimensionale, Rend. Sem. Mat. Univ. Padova, 30 (1960), 16-23. Zbl0098.17204MR115017
- [3] Teoremi ergodici per le equazioni della idrodinamica, C.I.M.E., Roma, 1960. Zbl0117.10504
- [4] On probability measures related to the Navier-Stokes equations in the 3-dimensional case, Air Force Res. Div. Contr. A.P. 61 (052)-414, Technical Note no. 2 (1961), Trieste, 1961.
- [5] Résultats récents dans la théorie des équations de Navier-Stokes. Les équations aux dérivées partielles, Colloques Intern. CNRS, Paris, 1962. Zbl0255.35076
- [6] Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie, Rend. Sem. Mat. Univ. Padova, 32 (1962), 374-397. Zbl0108.28602MR189354
- Reynolds ( O.) [1] On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Phil. Trans. Rodal Soc. London, 186 (1894), 123-161. JFM26.0872.02
- Rosen ( G.) [1] Functional integration theory for incompressible fluid turbulence, ThePhys. of Fluids, 10 (1967), 2614-2619. Zbl0204.28505
- Riesz ( F.) - Sz.-Nagy ( B.) [1] Leçons d'analyse fonctionnelle, Gauthier-Villars, Akad. Kiado, Budapest, 1965. Zbl0122.11205MR179567
- Rudin ( W.) [1] Fourier Analysis on Groups, Interscience Publ., New York, 1962. Zbl0107.09603MR152834
- Sansone ( G.) [1] Equazioni differenziali nel campo reale, parte I, Seconda edizione, Bologna, 1948. JFM67.0306.01
- Schlichting ( H.) [1] Boundary Layer Theory, 4th ed., McGraw-Hill, New York, 1960. Zbl0096.20105MR76530
- Serrin ( J.) [1] Mathematical Principle of Classical Fluid Mechanics, Handbuch der Physik, Band VIII/1, Strömungs Mechanik I, Berlin, 1959. MR108116
- Vo-Khan ( K.) [1] Etude des fonctions quasi-stationnaires et de leurs applications aux équations différentielles opérationnelles, Bull. Soc. Math. France, suppl. au no. de Juin 1966, mémoire 6. Zbl0165.49504MR198302
Citations in EuDML Documents
top- Andrzej Lasota, Invariant measures and a linear model of turbulence
- O. A. Ladyzhenskaya, A. M. Vershik, Sur l'évolution des mesures déterminées par les équations de Navier-Stokes et la résolution du problème de Cauchy pour l'équation statistique de E. Hopf
- Paweł J. Mitkowski, Wojciech Mitkowski, Ergodic theory approach to chaos: Remarks and computational aspects
- Ricardo M. S. Rosa, Some results on the Navier-Stokes equations in connection with the statistical theory of stationary turbulence
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.