The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms

H. W. K. Angad-Gaur

Rendiconti del Seminario Matematico della Università di Padova (1977)

  • Volume: 57, page 299-309
  • ISSN: 0041-8994

How to cite

top

Angad-Gaur, H. W. K.. "The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms." Rendiconti del Seminario Matematico della Università di Padova 57 (1977): 299-309. <http://eudml.org/doc/107640>.

@article{Angad1977,
author = {Angad-Gaur, H. W. K.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Reduced Torsion-Free Abelian Group of Finite Rank; Module over Its Endomorphism Ring; Projective Dimension of An Abelian Group},
language = {eng},
pages = {299-309},
publisher = {Seminario Matematico of the University of Padua},
title = {The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms},
url = {http://eudml.org/doc/107640},
volume = {57},
year = {1977},
}

TY - JOUR
AU - Angad-Gaur, H. W. K.
TI - The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1977
PB - Seminario Matematico of the University of Padua
VL - 57
SP - 299
EP - 309
LA - eng
KW - Reduced Torsion-Free Abelian Group of Finite Rank; Module over Its Endomorphism Ring; Projective Dimension of An Abelian Group
UR - http://eudml.org/doc/107640
ER -

References

top
  1. [1] I.V. Bobylev, Endoprojective dimension of modules, Sibirskii Matematicheskii Zhurnal16 (1975) no. 4663-682, 883. Zbl0313.16028MR379595
  2. [2] A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc.13 (1963) 687-710. Zbl0116.02403MR153743
  3. [3] A.J. Douglas and H.K. Farahat, The homological dimension of an abelian group as a module over its ring of endomorphisms, Monatsh. Math.69 (1965), 294-305; Monatsh. Math.76 (1972), 109-111; Monatsh. Math.80 (1975), 37-44. Zbl0152.00602MR185002
  4. [4] L. Fuchs, Infinite Abelian Groups I, II. Academic Press (1970). Zbl0257.20035MR255673
  5. [5] J.P. Jans, Rings and Homology. Holt, Rinehert and Winston (1964). Zbl0141.02901MR163944
  6. [6] I. Kaplansky, Fields and Rings, The University of Chicago Press (1972). Zbl1001.16501MR349646
  7. [7] F. Richman and E.A. Walker, Homological dimension of abelian groups over their endomorphism rings, Proc. American Math. Soc.54 (1976), 65-68. Zbl0326.20049MR393279

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.