The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms

H. W. K. Angad-Gaur

Rendiconti del Seminario Matematico della Università di Padova (1977)

  • Volume: 57, page 299-309
  • ISSN: 0041-8994

How to cite

top

Angad-Gaur, H. W. K.. "The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms." Rendiconti del Seminario Matematico della Università di Padova 57 (1977): 299-309. <http://eudml.org/doc/107640>.

@article{Angad1977,
author = {Angad-Gaur, H. W. K.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Reduced Torsion-Free Abelian Group of Finite Rank; Module over Its Endomorphism Ring; Projective Dimension of An Abelian Group},
language = {eng},
pages = {299-309},
publisher = {Seminario Matematico of the University of Padua},
title = {The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms},
url = {http://eudml.org/doc/107640},
volume = {57},
year = {1977},
}

TY - JOUR
AU - Angad-Gaur, H. W. K.
TI - The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1977
PB - Seminario Matematico of the University of Padua
VL - 57
SP - 299
EP - 309
LA - eng
KW - Reduced Torsion-Free Abelian Group of Finite Rank; Module over Its Endomorphism Ring; Projective Dimension of An Abelian Group
UR - http://eudml.org/doc/107640
ER -

References

top
  1. [1] I.V. Bobylev, Endoprojective dimension of modules, Sibirskii Matematicheskii Zhurnal16 (1975) no. 4663-682, 883. Zbl0313.16028MR379595
  2. [2] A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc.13 (1963) 687-710. Zbl0116.02403MR153743
  3. [3] A.J. Douglas and H.K. Farahat, The homological dimension of an abelian group as a module over its ring of endomorphisms, Monatsh. Math.69 (1965), 294-305; Monatsh. Math.76 (1972), 109-111; Monatsh. Math.80 (1975), 37-44. Zbl0152.00602MR185002
  4. [4] L. Fuchs, Infinite Abelian Groups I, II. Academic Press (1970). Zbl0257.20035MR255673
  5. [5] J.P. Jans, Rings and Homology. Holt, Rinehert and Winston (1964). Zbl0141.02901MR163944
  6. [6] I. Kaplansky, Fields and Rings, The University of Chicago Press (1972). Zbl1001.16501MR349646
  7. [7] F. Richman and E.A. Walker, Homological dimension of abelian groups over their endomorphism rings, Proc. American Math. Soc.54 (1976), 65-68. Zbl0326.20049MR393279

NotesEmbed ?

top

You must be logged in to post comments.