The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms
Rendiconti del Seminario Matematico della Università di Padova (1977)
- Volume: 57, page 299-309
- ISSN: 0041-8994
Access Full Article
topHow to cite
topReferences
top- [1] I.V. Bobylev, Endoprojective dimension of modules, Sibirskii Matematicheskii Zhurnal16 (1975) no. 4663-682, 883. Zbl0313.16028MR379595
- [2] A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc.13 (1963) 687-710. Zbl0116.02403MR153743
- [3] A.J. Douglas and H.K. Farahat, The homological dimension of an abelian group as a module over its ring of endomorphisms, Monatsh. Math.69 (1965), 294-305; Monatsh. Math.76 (1972), 109-111; Monatsh. Math.80 (1975), 37-44. Zbl0152.00602MR185002
- [4] L. Fuchs, Infinite Abelian Groups I, II. Academic Press (1970). Zbl0257.20035MR255673
- [5] J.P. Jans, Rings and Homology. Holt, Rinehert and Winston (1964). Zbl0141.02901MR163944
- [6] I. Kaplansky, Fields and Rings, The University of Chicago Press (1972). Zbl1001.16501MR349646
- [7] F. Richman and E.A. Walker, Homological dimension of abelian groups over their endomorphism rings, Proc. American Math. Soc.54 (1976), 65-68. Zbl0326.20049MR393279