# The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms

Rendiconti del Seminario Matematico della Università di Padova (1977)

- Volume: 57, page 299-309
- ISSN: 0041-8994

## Access Full Article

top## How to cite

topAngad-Gaur, H. W. K.. "The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms." Rendiconti del Seminario Matematico della Università di Padova 57 (1977): 299-309. <http://eudml.org/doc/107640>.

@article{Angad1977,

author = {Angad-Gaur, H. W. K.},

journal = {Rendiconti del Seminario Matematico della Università di Padova},

keywords = {Reduced Torsion-Free Abelian Group of Finite Rank; Module over Its Endomorphism Ring; Projective Dimension of An Abelian Group},

language = {eng},

pages = {299-309},

publisher = {Seminario Matematico of the University of Padua},

title = {The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms},

url = {http://eudml.org/doc/107640},

volume = {57},

year = {1977},

}

TY - JOUR

AU - Angad-Gaur, H. W. K.

TI - The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms

JO - Rendiconti del Seminario Matematico della Università di Padova

PY - 1977

PB - Seminario Matematico of the University of Padua

VL - 57

SP - 299

EP - 309

LA - eng

KW - Reduced Torsion-Free Abelian Group of Finite Rank; Module over Its Endomorphism Ring; Projective Dimension of An Abelian Group

UR - http://eudml.org/doc/107640

ER -

## References

top- [1] I.V. Bobylev, Endoprojective dimension of modules, Sibirskii Matematicheskii Zhurnal16 (1975) no. 4663-682, 883. Zbl0313.16028MR379595
- [2] A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc.13 (1963) 687-710. Zbl0116.02403MR153743
- [3] A.J. Douglas and H.K. Farahat, The homological dimension of an abelian group as a module over its ring of endomorphisms, Monatsh. Math.69 (1965), 294-305; Monatsh. Math.76 (1972), 109-111; Monatsh. Math.80 (1975), 37-44. Zbl0152.00602MR185002
- [4] L. Fuchs, Infinite Abelian Groups I, II. Academic Press (1970). Zbl0257.20035MR255673
- [5] J.P. Jans, Rings and Homology. Holt, Rinehert and Winston (1964). Zbl0141.02901MR163944
- [6] I. Kaplansky, Fields and Rings, The University of Chicago Press (1972). Zbl1001.16501MR349646
- [7] F. Richman and E.A. Walker, Homological dimension of abelian groups over their endomorphism rings, Proc. American Math. Soc.54 (1976), 65-68. Zbl0326.20049MR393279

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.