Minimal equations, global reducibility of holomorphic functions, and relative rationality of analytic sets

Chia-Chi Tung

Rendiconti del Seminario Matematico della Università di Padova (1980)

  • Volume: 63, page 127-143
  • ISSN: 0041-8994

How to cite

top

Tung, Chia-Chi. "Minimal equations, global reducibility of holomorphic functions, and relative rationality of analytic sets." Rendiconti del Seminario Matematico della Università di Padova 63 (1980): 127-143. <http://eudml.org/doc/107761>.

@article{Tung1980,
author = {Tung, Chia-Chi},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {rationality of analytic subset; pseudopolynomials; defining equations; factorisation of holomorphic function},
language = {eng},
pages = {127-143},
publisher = {Seminario Matematico of the University of Padua},
title = {Minimal equations, global reducibility of holomorphic functions, and relative rationality of analytic sets},
url = {http://eudml.org/doc/107761},
volume = {63},
year = {1980},
}

TY - JOUR
AU - Tung, Chia-Chi
TI - Minimal equations, global reducibility of holomorphic functions, and relative rationality of analytic sets
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1980
PB - Seminario Matematico of the University of Padua
VL - 63
SP - 127
EP - 143
LA - eng
KW - rationality of analytic subset; pseudopolynomials; defining equations; factorisation of holomorphic function
UR - http://eudml.org/doc/107761
ER -

References

top
  1. [1] A. Andreotti - W. STOLL, Analytic and algebraic dependence of meromorphic functions, Lectures Notes in Math., No. 234, Springer-Verlag, Berlin- Heidelberg-New York, 1971. Zbl0222.32013MR390298
  2. [2] E. Bishop, Conditions for the analyticity of certain sets, Michigan Math. J., 11 (1964), pp. 289-304. Zbl0143.30302MR168801
  3. [3] G. Fischer, Ein relativer Satz von Chow und die Elimination von Unbestimmtheitsstellen meromorpher Funktionen, Math. Ann., 217 (1975), pp. 145-152. Zbl0313.32035MR397031
  4. [4] H. Grauert - R. REMMERT, Bilder and Urbilder analytischer Garben, Ann. of Math. (2), 68 (1958), pp. 393-443. Zbl0089.06003MR102612
  5. [5] H. Grauert - R. Remmert, Analytische Stellenalgebren, Grundl. Math. Wiss. Band, 176, Springer-Verlag, Berlin-Heidelberg -NeW York, 1971. Zbl0231.32001MR316742
  6. [6] R.C. Gunning - H. ROSSI, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N. J., 1965. Zbl0141.08601MR180696
  7. [7] R. Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Math., No. 25, Springer-Verlag, Berlin-Heidelberg-New York, 1966. Zbl0168.06003MR217337
  8. [8] W.F. Osgood, Lehrbuch der Funktionentheorie - II, part 1, 2-nd ed., Teubner, Leipzig-Berlin, 1929. Zbl55.0171.02JFM55.0171.02
  9. [9] L.I. Ronkin, The global reducibility of pseudopolynomials (Russian), Mat. Fiz. i Funktional Anal. Vyp., 2, 238 (1971), pp. 117-121, 238, MR 56, 15966. MR457762
  10. [10] W. Stoll, The multiplicity of a holomorphic map, Invent. Math., 2 (1966), pp. 15-38. Zbl0158.08403MR210947
  11. [11] C. Tung, The first main theorem of value distribution on complex spaces, Memorie dell'Accademia Nazionale dei Lincei, Serie VIII, Vol. XV, Sez. 1, Fasc. (1979), pp. 91-263. Zbl0496.32018MR563153
  12. [12] C. Tung, On the rationality of divisors and meromoprhic functions, Trans. Amer. Math. Soc., 239 (1978), pp. 399-406. Zbl0352.32026MR463511
  13. [13] H. Whitney, Complex analytic varieties, Addison-Wesley, Reading, Mass., 1972. Zbl0265.32008MR387634

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.