Gruppi finiti risolubili in cui tutti i sottogruppi subnormali hanno difetto al più 2

Carlo Casolo

Rendiconti del Seminario Matematico della Università di Padova (1984)

  • Volume: 71, page 257-271
  • ISSN: 0041-8994

How to cite

top

Casolo, Carlo. "Gruppi finiti risolubili in cui tutti i sottogruppi subnormali hanno difetto al più $2$." Rendiconti del Seminario Matematico della Università di Padova 71 (1984): 257-271. <http://eudml.org/doc/107940>.

@article{Casolo1984,
author = {Casolo, Carlo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {subnormal subgroup; finite soluble group; subnormal defect; Fitting length; derived length; holomorph; nilpotent groups},
language = {ita},
pages = {257-271},
publisher = {Seminario Matematico of the University of Padua},
title = {Gruppi finiti risolubili in cui tutti i sottogruppi subnormali hanno difetto al più $2$},
url = {http://eudml.org/doc/107940},
volume = {71},
year = {1984},
}

TY - JOUR
AU - Casolo, Carlo
TI - Gruppi finiti risolubili in cui tutti i sottogruppi subnormali hanno difetto al più $2$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1984
PB - Seminario Matematico of the University of Padua
VL - 71
SP - 257
EP - 271
LA - ita
KW - subnormal subgroup; finite soluble group; subnormal defect; Fitting length; derived length; holomorph; nilpotent groups
UR - http://eudml.org/doc/107940
ER -

References

top
  1. [1] E. Best - O. Taussky, A class of groups, Proc. Roy. Irish. Acad. Sect. A., 47 (1942), pp. 55-62. Zbl0063.00359MR6539
  2. [2] J.D. Dixon, The structure of linear groups, London, 1971. Zbl0232.20079
  3. [3] W. Gaschütz, Gruppen in denen das Normalteilersein transitiv ist, J. Reine Ang. Math., 198 (1957), pp. 87-92. Zbl0077.25003MR91277
  4. [4] D. Gorenstein, Finite groups, New York, 1968. Zbl0463.20012MR231903
  5. [5] H. Heineken, A class of three-Engel groups, J. Algebra, 17 (1971), pp. 341-345. Zbl0216.08901MR276340
  6. [6] C. Hobby, Finite groups with normal normalizers, Can. J. Math., 20 (1968), pp. 1256-1260. Zbl0174.31102MR229722
  7. [7] B. Huppert, Endliche gruppen, Berlin, 1967. Zbl0217.07201
  8. [8] B. Huppert, Zur Sylowstruktur auflosbarer gruppen, Arch. Math., 12 (1961), pp. 161-169. Zbl0102.26803MR142641
  9. [9] D.J. Mccaughan - S. E . STONEHEWER, Finite soluble groups whose subnormal subgroups have defect at most two, Arch. Math., 35 (1980), pp. 56-60. Zbl0418.20018MR578017
  10. [10] D.J.S. Robinson, Groups in which normality is a transitive relation, Proc. Camb. Phil. Soc., 60 (1964), pp. 21-38. Zbl0123.24901MR159885
  11. [11] D.J.S. Robinson, Wreath products and indices of subnormality, Proc. London Math. Soc., 17 (1967), pp. 157-270. Zbl0166.01603MR204508
  12. [12] J.E. Roseblade, On groups in which every subgroup is subnormal, J. Algebra, 2 (1965), pp. 402-412. Zbl0135.04901MR193147
  13. [13] G. Zacher, Caratterizzazione dei t-gruppi finiti risolubili, Ricerche Matematiche, 1 (1952), pp. 287-294. Zbl0081.25701MR53104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.