Groups with subnormal subgroups of bounded defect
Rendiconti del Seminario Matematico della Università di Padova (1987)
- Volume: 77, page 177-187
- ISSN: 0041-8994
Access Full Article
topHow to cite
topCasolo, Carlo. "Groups with subnormal subgroups of bounded defect." Rendiconti del Seminario Matematico della Università di Padova 77 (1987): 177-187. <http://eudml.org/doc/108059>.
@article{Casolo1987,
author = {Casolo, Carlo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {subnormal subgroup; defect; derived length; soluble groups; periodic soluble groups; soluble p-group; wreath products},
language = {eng},
pages = {177-187},
publisher = {Seminario Matematico of the University of Padua},
title = {Groups with subnormal subgroups of bounded defect},
url = {http://eudml.org/doc/108059},
volume = {77},
year = {1987},
}
TY - JOUR
AU - Casolo, Carlo
TI - Groups with subnormal subgroups of bounded defect
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1987
PB - Seminario Matematico of the University of Padua
VL - 77
SP - 177
EP - 187
LA - eng
KW - subnormal subgroup; defect; derived length; soluble groups; periodic soluble groups; soluble p-group; wreath products
UR - http://eudml.org/doc/108059
ER -
References
top- [1] C. Casolo, Gruppi finiti risolubiti in cui tutti i sottogruppi subnormali hanno difetto al più 2, Rend. Sem. Mat. Univ. Padova, 74 (1984), pp. 257-271. Zbl0575.20019
- [2] C. Casolo, Periodic soluble groups in which every subnormal subgroup has defect at most two, Arch. Math., 46 (1986), pp. 1-7. Zbl0571.20021MR829804
- [3] W. Gaschütz: Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math., 198 (1957), pp. 87-92. Zbl0077.25003MR91277
- [4] P. Hall, Wreath powers and characteristically simple groups, Proc. Cambridge Phil. Soc., 58 (1962), pp. 170-184. Zbl0109.01302MR139649
- [5] T.O. Hawkes, Groups whose subnormal subgroups have bounded defect, Arch. Math., 43 (1984), pp. 289-294. Zbl0547.20017MR802300
- [6] F. Leinen, Existenziell abgeschlossene Lχ-Gruppen, Dissertation, Albert-Ludwigs Univ., Friburg i.Br., 1984.
- [7] D.J. McCaughan - S.E. Stonehewer, Finite soluble groups whose subnormal subgroups have defect at most two, Arch. Math., 35 (1980), pp. 56-60. Zbl0418.20018MR578017
- [8] D. McDougall, The subnormal structure of some classes of soluble groups, J. Austral. Math. Soc., 13 (1972), pp. 365-377. Zbl0237.20026MR308272
- [9] D.J.S. Robinson, On groups in which normality is a transitive relation, Proc. Cambridge Phil. Soc., 60 (1964), pp. 21-38. Zbl0123.24901MR159885
- [10] D.J.S. Robinson, On the theory of subnormal subgroups, Math. Zeit., 89 (1965), pp. 30-51. Zbl0134.26004MR185011
- [11] D.J.S. Robinson, Wreath products and indices of subnormality, Proc. London Math. Soc., (3) 17 (1967), pp. 257-270. Zbl0166.01603MR204508
- [12] D.J.S. Robinson, Infinite soluble and nilpotent groups, London, Q.M.C. Math. Notes (1968). MR269740
- [13] D.J.S. Robinson, Finiteness conditions and generalised soluble groups, Springer, Berlin-Heidelberg-New York, 1972. Zbl0243.20032
- [14] J.E. Roseblade, On groups in which every subgroup is subnormal, J. Algebra, 2 (1965), pp. 402-412. Zbl0135.04901MR193147
- [15] H. Smith, Groups with the subnormal join property, Can. J. Math., 37 (1985), pp. 1-16. Zbl0592.20042MR777035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.