Groups with subnormal subgroups of bounded defect

Carlo Casolo

Rendiconti del Seminario Matematico della Università di Padova (1987)

  • Volume: 77, page 177-187
  • ISSN: 0041-8994

How to cite

top

Casolo, Carlo. "Groups with subnormal subgroups of bounded defect." Rendiconti del Seminario Matematico della Università di Padova 77 (1987): 177-187. <http://eudml.org/doc/108059>.

@article{Casolo1987,
author = {Casolo, Carlo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {subnormal subgroup; defect; derived length; soluble groups; periodic soluble groups; soluble p-group; wreath products},
language = {eng},
pages = {177-187},
publisher = {Seminario Matematico of the University of Padua},
title = {Groups with subnormal subgroups of bounded defect},
url = {http://eudml.org/doc/108059},
volume = {77},
year = {1987},
}

TY - JOUR
AU - Casolo, Carlo
TI - Groups with subnormal subgroups of bounded defect
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1987
PB - Seminario Matematico of the University of Padua
VL - 77
SP - 177
EP - 187
LA - eng
KW - subnormal subgroup; defect; derived length; soluble groups; periodic soluble groups; soluble p-group; wreath products
UR - http://eudml.org/doc/108059
ER -

References

top
  1. [1] C. Casolo, Gruppi finiti risolubiti in cui tutti i sottogruppi subnormali hanno difetto al più 2, Rend. Sem. Mat. Univ. Padova, 74 (1984), pp. 257-271. Zbl0575.20019
  2. [2] C. Casolo, Periodic soluble groups in which every subnormal subgroup has defect at most two, Arch. Math., 46 (1986), pp. 1-7. Zbl0571.20021MR829804
  3. [3] W. Gaschütz: Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math., 198 (1957), pp. 87-92. Zbl0077.25003MR91277
  4. [4] P. Hall, Wreath powers and characteristically simple groups, Proc. Cambridge Phil. Soc., 58 (1962), pp. 170-184. Zbl0109.01302MR139649
  5. [5] T.O. Hawkes, Groups whose subnormal subgroups have bounded defect, Arch. Math., 43 (1984), pp. 289-294. Zbl0547.20017MR802300
  6. [6] F. Leinen, Existenziell abgeschlossene Lχ-Gruppen, Dissertation, Albert-Ludwigs Univ., Friburg i.Br., 1984. 
  7. [7] D.J. McCaughan - S.E. Stonehewer, Finite soluble groups whose subnormal subgroups have defect at most two, Arch. Math., 35 (1980), pp. 56-60. Zbl0418.20018MR578017
  8. [8] D. McDougall, The subnormal structure of some classes of soluble groups, J. Austral. Math. Soc., 13 (1972), pp. 365-377. Zbl0237.20026MR308272
  9. [9] D.J.S. Robinson, On groups in which normality is a transitive relation, Proc. Cambridge Phil. Soc., 60 (1964), pp. 21-38. Zbl0123.24901MR159885
  10. [10] D.J.S. Robinson, On the theory of subnormal subgroups, Math. Zeit., 89 (1965), pp. 30-51. Zbl0134.26004MR185011
  11. [11] D.J.S. Robinson, Wreath products and indices of subnormality, Proc. London Math. Soc., (3) 17 (1967), pp. 257-270. Zbl0166.01603MR204508
  12. [12] D.J.S. Robinson, Infinite soluble and nilpotent groups, London, Q.M.C. Math. Notes (1968). MR269740
  13. [13] D.J.S. Robinson, Finiteness conditions and generalised soluble groups, Springer, Berlin-Heidelberg-New York, 1972. Zbl0243.20032
  14. [14] J.E. Roseblade, On groups in which every subgroup is subnormal, J. Algebra, 2 (1965), pp. 402-412. Zbl0135.04901MR193147
  15. [15] H. Smith, Groups with the subnormal join property, Can. J. Math., 37 (1985), pp. 1-16. Zbl0592.20042MR777035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.