Wielandt series and defects of subnormal subgroups in finite soluble groups

Carlo Casolo

Rendiconti del Seminario Matematico della Università di Padova (1992)

  • Volume: 87, page 93-104
  • ISSN: 0041-8994

How to cite

top

Casolo, Carlo. "Wielandt series and defects of subnormal subgroups in finite soluble groups." Rendiconti del Seminario Matematico della Università di Padova 87 (1992): 93-104. <http://eudml.org/doc/108261>.

@article{Casolo1992,
author = {Casolo, Carlo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {bound on Wielandt length; derived length; soluble group; Fitting length; subnormal defects},
language = {eng},
pages = {93-104},
publisher = {Seminario Matematico of the University of Padua},
title = {Wielandt series and defects of subnormal subgroups in finite soluble groups},
url = {http://eudml.org/doc/108261},
volume = {87},
year = {1992},
}

TY - JOUR
AU - Casolo, Carlo
TI - Wielandt series and defects of subnormal subgroups in finite soluble groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1992
PB - Seminario Matematico of the University of Padua
VL - 87
SP - 93
EP - 104
LA - eng
KW - bound on Wielandt length; derived length; soluble group; Fitting length; subnormal defects
UR - http://eudml.org/doc/108261
ER -

References

top
  1. [1] R.A. Bryce, A note on subnormal defect in finite soluble groups, Bull. Austral. Math. Soc., 39 (1989), pp. 255-258. Zbl0673.20011MR998019
  2. [2] R.A. Bryce - J. COSSEY, The Wielandt subgroup of a finite soluble group, J. London Math. Soc. (2), 40 (1989), pp. 244-256. Zbl0734.20010MR1044272
  3. [3] R. Carter - T.O. Hawkes, The F-normalizers of a finite soluble . group, J. Algebra, 5 (1967), pp. 175-202. Zbl0167.29201MR206089
  4. [4] C. Casolo, Soluble groups with finite Wielandt length, Glasgow Math. J., 31 (1989), pp. 329-334. Zbl0682.20018MR1021808
  5. [5] C. Casolo, Gruppi finiti risolubili in cui tutti i sottogruppi subnormali hanno difetto al più 2, Rend. Sem. Mat. Univ. Padova, 71 (1984), pp. 257-271. Zbl0575.20019
  6. [6] W. Gaschütz, Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math., 198 (1957), pp. 87-92. Zbl0077.25003MR91277
  7. [7] P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math., 2 (1958), pp. 787-801. Zbl0084.25602MR105441
  8. [8] T.O. Hawkes, Groups whose subnormal subgroups have bounded defects, Arch. Math. (Basel), 43 (1984), pp. 289-294. Zbl0547.20017MR802300
  9. [9] J.C. Lennox - S.E. Stonehewer, Subnormal Subgroups of Groups, Oxford Math. Monographs, Clarendon Press, Oxford (1987). Zbl0606.20001MR902587
  10. [10] D.J.S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Phil. Soc., 60 (1964), pp. 21-38. Zbl0123.24901MR159885
  11. [11] J.E. Roseblade, On groups in which every subgroup is subnormal, J. Algebra, 2 (1965), pp. 402-412. Zbl0135.04901MR193147
  12. [12] E.E. Shult, A note on splitting in solvable groups, Proc. Amer. Math. Soc., 17 (1966), pp. 318-320. Zbl0142.26002MR207843
  13. [13] H. Wielandt, Über den Normalisator der subnormalen Untergruppen, Math. Z., 59 (1958), pp. 463-465. Zbl0082.24703MR102550

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.