Wielandt series and defects of subnormal subgroups in finite soluble groups
Rendiconti del Seminario Matematico della Università di Padova (1992)
- Volume: 87, page 93-104
- ISSN: 0041-8994
Access Full Article
topHow to cite
topReferences
top- [1] R.A. Bryce, A note on subnormal defect in finite soluble groups, Bull. Austral. Math. Soc., 39 (1989), pp. 255-258. Zbl0673.20011MR998019
- [2] R.A. Bryce - J. COSSEY, The Wielandt subgroup of a finite soluble group, J. London Math. Soc. (2), 40 (1989), pp. 244-256. Zbl0734.20010MR1044272
- [3] R. Carter - T.O. Hawkes, The F-normalizers of a finite soluble . group, J. Algebra, 5 (1967), pp. 175-202. Zbl0167.29201MR206089
- [4] C. Casolo, Soluble groups with finite Wielandt length, Glasgow Math. J., 31 (1989), pp. 329-334. Zbl0682.20018MR1021808
- [5] C. Casolo, Gruppi finiti risolubili in cui tutti i sottogruppi subnormali hanno difetto al più 2, Rend. Sem. Mat. Univ. Padova, 71 (1984), pp. 257-271. Zbl0575.20019
- [6] W. Gaschütz, Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math., 198 (1957), pp. 87-92. Zbl0077.25003MR91277
- [7] P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math., 2 (1958), pp. 787-801. Zbl0084.25602MR105441
- [8] T.O. Hawkes, Groups whose subnormal subgroups have bounded defects, Arch. Math. (Basel), 43 (1984), pp. 289-294. Zbl0547.20017MR802300
- [9] J.C. Lennox - S.E. Stonehewer, Subnormal Subgroups of Groups, Oxford Math. Monographs, Clarendon Press, Oxford (1987). Zbl0606.20001MR902587
- [10] D.J.S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Phil. Soc., 60 (1964), pp. 21-38. Zbl0123.24901MR159885
- [11] J.E. Roseblade, On groups in which every subgroup is subnormal, J. Algebra, 2 (1965), pp. 402-412. Zbl0135.04901MR193147
- [12] E.E. Shult, A note on splitting in solvable groups, Proc. Amer. Math. Soc., 17 (1966), pp. 318-320. Zbl0142.26002MR207843
- [13] H. Wielandt, Über den Normalisator der subnormalen Untergruppen, Math. Z., 59 (1958), pp. 463-465. Zbl0082.24703MR102550