Wielandt series and defects of subnormal subgroups in finite soluble groups

Carlo Casolo

Rendiconti del Seminario Matematico della Università di Padova (1992)

  • Volume: 87, page 93-104
  • ISSN: 0041-8994

How to cite

top

Casolo, Carlo. "Wielandt series and defects of subnormal subgroups in finite soluble groups." Rendiconti del Seminario Matematico della Università di Padova 87 (1992): 93-104. <http://eudml.org/doc/108261>.

@article{Casolo1992,
author = {Casolo, Carlo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {bound on Wielandt length; derived length; soluble group; Fitting length; subnormal defects},
language = {eng},
pages = {93-104},
publisher = {Seminario Matematico of the University of Padua},
title = {Wielandt series and defects of subnormal subgroups in finite soluble groups},
url = {http://eudml.org/doc/108261},
volume = {87},
year = {1992},
}

TY - JOUR
AU - Casolo, Carlo
TI - Wielandt series and defects of subnormal subgroups in finite soluble groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1992
PB - Seminario Matematico of the University of Padua
VL - 87
SP - 93
EP - 104
LA - eng
KW - bound on Wielandt length; derived length; soluble group; Fitting length; subnormal defects
UR - http://eudml.org/doc/108261
ER -

References

top
  1. [1] R.A. Bryce, A note on subnormal defect in finite soluble groups, Bull. Austral. Math. Soc., 39 (1989), pp. 255-258. Zbl0673.20011MR998019
  2. [2] R.A. Bryce - J. COSSEY, The Wielandt subgroup of a finite soluble group, J. London Math. Soc. (2), 40 (1989), pp. 244-256. Zbl0734.20010MR1044272
  3. [3] R. Carter - T.O. Hawkes, The F-normalizers of a finite soluble . group, J. Algebra, 5 (1967), pp. 175-202. Zbl0167.29201MR206089
  4. [4] C. Casolo, Soluble groups with finite Wielandt length, Glasgow Math. J., 31 (1989), pp. 329-334. Zbl0682.20018MR1021808
  5. [5] C. Casolo, Gruppi finiti risolubili in cui tutti i sottogruppi subnormali hanno difetto al più 2, Rend. Sem. Mat. Univ. Padova, 71 (1984), pp. 257-271. Zbl0575.20019
  6. [6] W. Gaschütz, Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math., 198 (1957), pp. 87-92. Zbl0077.25003MR91277
  7. [7] P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math., 2 (1958), pp. 787-801. Zbl0084.25602MR105441
  8. [8] T.O. Hawkes, Groups whose subnormal subgroups have bounded defects, Arch. Math. (Basel), 43 (1984), pp. 289-294. Zbl0547.20017MR802300
  9. [9] J.C. Lennox - S.E. Stonehewer, Subnormal Subgroups of Groups, Oxford Math. Monographs, Clarendon Press, Oxford (1987). Zbl0606.20001MR902587
  10. [10] D.J.S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Phil. Soc., 60 (1964), pp. 21-38. Zbl0123.24901MR159885
  11. [11] J.E. Roseblade, On groups in which every subgroup is subnormal, J. Algebra, 2 (1965), pp. 402-412. Zbl0135.04901MR193147
  12. [12] E.E. Shult, A note on splitting in solvable groups, Proc. Amer. Math. Soc., 17 (1966), pp. 318-320. Zbl0142.26002MR207843
  13. [13] H. Wielandt, Über den Normalisator der subnormalen Untergruppen, Math. Z., 59 (1958), pp. 463-465. Zbl0082.24703MR102550

NotesEmbed ?

top

You must be logged in to post comments.