Substitutions on two letters, cutting segments and their projections
- [1] Mathematical Institute Leiden University P.O. Box 9512, 2300 RA Leiden The Netherlands
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 2, page 523-545
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topRosema, Sierk W.. "Substitutions on two letters, cutting segments and their projections." Journal de Théorie des Nombres de Bordeaux 19.2 (2007): 523-545. <http://eudml.org/doc/10810>.
@article{Rosema2007,
abstract = {In this paper we study the structure of the projections of the finite cutting segments corresponding to unimodular substitutions over a two-letter alphabet. We show that such a projection is a block of letters if and only if the substitution is Sturmian. Applying the procedure of projecting the cutting segments corresponding to a Christoffel substitution twice results in the original substitution. This induces a duality on the set of Christoffel substitutions.},
affiliation = {Mathematical Institute Leiden University P.O. Box 9512, 2300 RA Leiden The Netherlands},
author = {Rosema, Sierk W.},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {2},
pages = {523-545},
publisher = {Université Bordeaux 1},
title = {Substitutions on two letters, cutting segments and their projections},
url = {http://eudml.org/doc/10810},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Rosema, Sierk W.
TI - Substitutions on two letters, cutting segments and their projections
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 2
SP - 523
EP - 545
AB - In this paper we study the structure of the projections of the finite cutting segments corresponding to unimodular substitutions over a two-letter alphabet. We show that such a projection is a block of letters if and only if the substitution is Sturmian. Applying the procedure of projecting the cutting segments corresponding to a Christoffel substitution twice results in the original substitution. This induces a duality on the set of Christoffel substitutions.
LA - eng
UR - http://eudml.org/doc/10810
ER -
References
top- J. Berstel, A. de Luca, Sturmian words, Lyndon words and trees. Theoret. Comput. Sci. 178 (1997), 171–203. Zbl0901.68155MR1453849
- E. B. Christoffel, Observatio arithmetica. Math. Ann. 6 (1875), 145–152.
- C. Fuchs, R. Tijdeman, Substitutions, abstract number systems and the space filling property. Ann. Inst. Fourier (Grenoble) 56 (2006), 2345–2389. Zbl1194.11023MR2290784
- M. Lothaire, Combinatorics on Words. Cambridge University Press, 1983. Zbl0874.20040MR675953
- M. Lothaire, Algebraic Combinatorics on Words. Cambridge University Press, 2002. Zbl1001.68093MR1905123
- M. Morse, G. A. Hedlund, Symbolic Dynamics. Amer. J. Math. 60 (1938), 815–866. Zbl0019.33502MR1507944
- M. Morse, G. A. Hedlund, Symbolic Dynamics II: Sturmian trajectories. Amer. J. Math. 62 (1940), 1–42. Zbl0022.34003MR745
- N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics. Springer, 2002. Zbl1014.11015MR1970385
- G. Rauzy, Nombres algébriques et substitutions. Bull. Soc. Math. France 110 (1982), 147–178. Zbl0522.10032MR667748
- G. Richomme, Test-words for Sturmian morphisms. Bull. Belg. Math. Soc. 6 (1999), 481–489. MR1732884
- G. Richomme, Lyndon morphisms. Bull. Belg. Math. Soc. 10 (2003), 761–785. Zbl1101.68075MR2073025
- S. W. Rosema, R. Tijdeman, The tribonacci substitution. Integers: Electron. J. Combin. Number Th. 5(3) (2005), A13. Zbl1099.11004MR2191759
- P. Séébold, Fibonacci morphisms and Sturmian words. Theoret. Comput. Sci. 195 (1991), 91–109. Zbl0981.68104MR1131075
- C. Series, The geometry of Markoff numbers. Math. Intelligencer 7, no. 3 (1985), 20–29. Zbl0566.10024MR795536
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.