Prescribing endomorphism algebras. The cotorsion-free case
Berthold Franzen; Rüdiger Göbel
Rendiconti del Seminario Matematico della Università di Padova (1988)
- Volume: 80, page 215-241
- ISSN: 0041-8994
Access Full Article
topHow to cite
topFranzen, Berthold, and Göbel, Rüdiger. "Prescribing endomorphism algebras. The cotorsion-free case." Rendiconti del Seminario Matematico della Università di Padova 80 (1988): 215-241. <http://eudml.org/doc/108120>.
@article{Franzen1988,
author = {Franzen, Berthold, Göbel, Rüdiger},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {endomorphism algebras; cotorsion-free R-module; pure subalgebra; topologically isomorphic; direct sum; Black Box},
language = {eng},
pages = {215-241},
publisher = {Seminario Matematico of the University of Padua},
title = {Prescribing endomorphism algebras. The cotorsion-free case},
url = {http://eudml.org/doc/108120},
volume = {80},
year = {1988},
}
TY - JOUR
AU - Franzen, Berthold
AU - Göbel, Rüdiger
TI - Prescribing endomorphism algebras. The cotorsion-free case
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1988
PB - Seminario Matematico of the University of Padua
VL - 80
SP - 215
EP - 241
LA - eng
KW - endomorphism algebras; cotorsion-free R-module; pure subalgebra; topologically isomorphic; direct sum; Black Box
UR - http://eudml.org/doc/108120
ER -
References
top- [1] A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3), 13 (1963), pp. 687-710. Zbl0116.02403MR153743
- [2] A.L.S. Corner, Endomorphism rings of torsion-free abelian groups, Proceedings of the International Conference on the Theory of Groups, Canberra, 1965 (Gordon and Breach, New York, 1967), pp. 59-69. Zbl0178.02303
- [3] A.L.S. Corner - R. Göbel, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc. (3), 50 (1985), pp. 447-479. Zbl0562.20030MR779399
- [4] M. Dugas - R. GÖBEL, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3), 45 (1982), pp. 319-336. Zbl0506.16022MR670040
- [5] M. Dugas - R. GÖBEL, Every cotorsion-free algebra is an endomorphism algebra, Math. Z., 181 (1982), pp. 451-470. Zbl0501.16031MR682667
- [6] M. Dugas - R. GÖBEL, Torsion-free abelian groups with prescribed finitely topologized endomorphism rings, Proc. Amer. Math. Soc., 90 (1984), pp. 519-527. Zbl0546.20047MR733399
- [7] L. Fuchs, Infinite abelian groups, Vols. I, II (Academic Press, New York, 1970, 1973). Zbl0209.05503MR255673
- [8] R. Göbel - S. Shelah, On semi-rigid classes of torsion-free abelian groups, J. Algebra, 93 (1985), pp. 136-150. Zbl0554.20018MR780487
- [9] R. Göbel - S. Shelah, Modules over arbitrary domains, Math. Z., 188 (1985), pp. 325-337. Zbl0535.16022MR771988
- [10] R. Göbel - S. Shelah, Modules over arbitrary domains II, Fundamenta mathematicae, 126 (1986), pp. 217-243. Zbl0615.16021MR882431
- [11] R. Göbel, On stout and slender groups, J. Algebra, 35 (1975), pp. 39-55. Zbl0317.20018MR376879
- [12] R. Göbel, The existence of rigid systems of maximal size, Proceedings of the international conference on abelian groups held at CISM, Udine, Italy in 1984 (Springer-Verlag, Wien, 1985; ed.: R. Göbel, C. Metelli, A. Orsatti, L. Salce), pp. 189-202. Zbl0564.16030MR789817
- [13] R. Göbel - B. Wald, Wachstumstypen und schlanke Gruppen, Sympos. Math., 23 (1979), pp. 201-239. Zbl0426.20041MR565607
- [14] V. D. MAZUROV - Y. I. MERZLYAKOV - V. A. CHURKIN (editors), The Kourovka Notebook, Unsolved Problems in Group Theory, Amer. Math. Soc. Transl., 121 (1983) (first ed. 1965). Zbl0512.20001MR728766
- [15] I. Kaplansky, Infinite abelian groups (The University of Michigan Press, Ann Arbor, 1971). Zbl0194.04402MR65561
- [16] S. Shelah, Existence of rigid-like families of abelian p-groups, Model theory and algebra, Lecture Notes in Mathematics 498 (Springer, Berlin, 1975), pp. 384-402. Zbl0329.20037MR412299
- [17] S. Shelah, Classification theory (North Holland, Amsterdam, 1978). Zbl0388.03009MR513226
- [18] S. Shelah, A combinatorial principle and endomorphism rings. - I: On p-groups, Israel J. Math., 49 (1984), pp. 239-257. Zbl0559.20039MR788269
- [19] S. Shelah, A combinatorial theorem and endomorphism rings of p-groups, pp. 37-86, CISM, Udine, Italy in 1984 (Springer-Verlag, Wien, 1985; ed.: R. Göbel, C. Metelli, A. Orsatti, L. Salce). Zbl0581.20052MR789808
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.