Prescribing endomorphism algebras. The cotorsion-free case

Berthold Franzen; Rüdiger Göbel

Rendiconti del Seminario Matematico della Università di Padova (1988)

  • Volume: 80, page 215-241
  • ISSN: 0041-8994

How to cite

top

Franzen, Berthold, and Göbel, Rüdiger. "Prescribing endomorphism algebras. The cotorsion-free case." Rendiconti del Seminario Matematico della Università di Padova 80 (1988): 215-241. <http://eudml.org/doc/108120>.

@article{Franzen1988,
author = {Franzen, Berthold, Göbel, Rüdiger},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {endomorphism algebras; cotorsion-free R-module; pure subalgebra; topologically isomorphic; direct sum; Black Box},
language = {eng},
pages = {215-241},
publisher = {Seminario Matematico of the University of Padua},
title = {Prescribing endomorphism algebras. The cotorsion-free case},
url = {http://eudml.org/doc/108120},
volume = {80},
year = {1988},
}

TY - JOUR
AU - Franzen, Berthold
AU - Göbel, Rüdiger
TI - Prescribing endomorphism algebras. The cotorsion-free case
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1988
PB - Seminario Matematico of the University of Padua
VL - 80
SP - 215
EP - 241
LA - eng
KW - endomorphism algebras; cotorsion-free R-module; pure subalgebra; topologically isomorphic; direct sum; Black Box
UR - http://eudml.org/doc/108120
ER -

References

top
  1. [1] A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3), 13 (1963), pp. 687-710. Zbl0116.02403MR153743
  2. [2] A.L.S. Corner, Endomorphism rings of torsion-free abelian groups, Proceedings of the International Conference on the Theory of Groups, Canberra, 1965 (Gordon and Breach, New York, 1967), pp. 59-69. Zbl0178.02303
  3. [3] A.L.S. Corner - R. Göbel, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc. (3), 50 (1985), pp. 447-479. Zbl0562.20030MR779399
  4. [4] M. Dugas - R. GÖBEL, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3), 45 (1982), pp. 319-336. Zbl0506.16022MR670040
  5. [5] M. Dugas - R. GÖBEL, Every cotorsion-free algebra is an endomorphism algebra, Math. Z., 181 (1982), pp. 451-470. Zbl0501.16031MR682667
  6. [6] M. Dugas - R. GÖBEL, Torsion-free abelian groups with prescribed finitely topologized endomorphism rings, Proc. Amer. Math. Soc., 90 (1984), pp. 519-527. Zbl0546.20047MR733399
  7. [7] L. Fuchs, Infinite abelian groups, Vols. I, II (Academic Press, New York, 1970, 1973). Zbl0209.05503MR255673
  8. [8] R. Göbel - S. Shelah, On semi-rigid classes of torsion-free abelian groups, J. Algebra, 93 (1985), pp. 136-150. Zbl0554.20018MR780487
  9. [9] R. Göbel - S. Shelah, Modules over arbitrary domains, Math. Z., 188 (1985), pp. 325-337. Zbl0535.16022MR771988
  10. [10] R. Göbel - S. Shelah, Modules over arbitrary domains II, Fundamenta mathematicae, 126 (1986), pp. 217-243. Zbl0615.16021MR882431
  11. [11] R. Göbel, On stout and slender groups, J. Algebra, 35 (1975), pp. 39-55. Zbl0317.20018MR376879
  12. [12] R. Göbel, The existence of rigid systems of maximal size, Proceedings of the international conference on abelian groups held at CISM, Udine, Italy in 1984 (Springer-Verlag, Wien, 1985; ed.: R. Göbel, C. Metelli, A. Orsatti, L. Salce), pp. 189-202. Zbl0564.16030MR789817
  13. [13] R. Göbel - B. Wald, Wachstumstypen und schlanke Gruppen, Sympos. Math., 23 (1979), pp. 201-239. Zbl0426.20041MR565607
  14. [14] V. D. MAZUROV - Y. I. MERZLYAKOV - V. A. CHURKIN (editors), The Kourovka Notebook, Unsolved Problems in Group Theory, Amer. Math. Soc. Transl., 121 (1983) (first ed. 1965). Zbl0512.20001MR728766
  15. [15] I. Kaplansky, Infinite abelian groups (The University of Michigan Press, Ann Arbor, 1971). Zbl0194.04402MR65561
  16. [16] S. Shelah, Existence of rigid-like families of abelian p-groups, Model theory and algebra, Lecture Notes in Mathematics 498 (Springer, Berlin, 1975), pp. 384-402. Zbl0329.20037MR412299
  17. [17] S. Shelah, Classification theory (North Holland, Amsterdam, 1978). Zbl0388.03009MR513226
  18. [18] S. Shelah, A combinatorial principle and endomorphism rings. - I: On p-groups, Israel J. Math., 49 (1984), pp. 239-257. Zbl0559.20039MR788269
  19. [19] S. Shelah, A combinatorial theorem and endomorphism rings of p-groups, pp. 37-86, CISM, Udine, Italy in 1984 (Springer-Verlag, Wien, 1985; ed.: R. Göbel, C. Metelli, A. Orsatti, L. Salce). Zbl0581.20052MR789808

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.