Derivations and multilinear polynomials

O. M. Di Vincenzo

Rendiconti del Seminario Matematico della Università di Padova (1989)

  • Volume: 81, page 209-219
  • ISSN: 0041-8994

How to cite

top

Di Vincenzo, O. M.. "Derivations and multilinear polynomials." Rendiconti del Seminario Matematico della Università di Padova 81 (1989): 209-219. <http://eudml.org/doc/108137>.

@article{DiVincenzo1989,
author = {Di Vincenzo, O. M.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {prime ring; -radical; derivation; multilinear and homogeneous polynomial; centroid; standard polynomial identity; center; Lie ideals},
language = {eng},
pages = {209-219},
publisher = {Seminario Matematico of the University of Padua},
title = {Derivations and multilinear polynomials},
url = {http://eudml.org/doc/108137},
volume = {81},
year = {1989},
}

TY - JOUR
AU - Di Vincenzo, O. M.
TI - Derivations and multilinear polynomials
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1989
PB - Seminario Matematico of the University of Padua
VL - 81
SP - 209
EP - 219
LA - eng
KW - prime ring; -radical; derivation; multilinear and homogeneous polynomial; centroid; standard polynomial identity; center; Lie ideals
UR - http://eudml.org/doc/108137
ER -

References

top
  1. [1] J. Bergen - A. GIAMBRUNO, f-radical extensions of rings, Rend. Sem. Mat. Univ. Padova, 77 (1987), pp. 125-133. Zbl0623.16008MR904615
  2. [2] J. Bergen - I.N. Herstein - J.W. Kerr, Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), pp. 259-267. Zbl0463.16023MR627439
  3. [3] L. Carini, Centralizers and Lie ideals, Rend. Sem. Mat. Univ. Padova, 78 (1987), pp. 255-259. Zbl0637.16021MR934516
  4. [4] B. Felzenswalb - A. Giambruno, Centralizers and multilinear polynomials in non-commutative rings, J. London Math. Soc., 19 (1979), pp. 417-428. Zbl0397.16025MR540054
  5. [5] B. Felzenswalb - A. Giambruno, Periodic and nil potynomials in rings, Canad. Math. Bull., 23 (1980), pp. 473-476. Zbl0462.16007MR602605
  6. [6] B. Felzenswalb - A. Giambruno, A commutativity theorem for rings with derivations, Pacific J. Math., 102 (1982), pp. 41-45. Zbl0501.16032MR682042
  7. [7] A. Giambruno, Rings f-radicals over P.I. subrings, Rend. Mat., (1), 13, VI (1980), pp. 105-113. Zbl0452.16010MR590736
  8. [8] I.N. Herstein, Rings with Involution, Univ. Chicago Press, Chicago, 1976. Zbl0343.16011MR442017
  9. [9] I.N. Herstein, A theorem on invariant subrings, J. Algebra, 83 (1983), pp. 26-32. Zbl0514.16001MR710584
  10. [10] 1 N. Herstein - C. PROCESI - M. SCHACHER, Algebraic valued functions on non-commutative rings, J. Algebra, 36 (1975), pp. 128-150. Zbl0311.16017MR374185

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.