Prime rings with hypercommuting derivations on a Lie ideal
V. De Filippis; O. M. Di Vincenzo
Rendiconti del Seminario Matematico della Università di Padova (1999)
- Volume: 102, page 305-317
- ISSN: 0041-8994
Access Full Article
topHow to cite
topDe Filippis, V., and Di Vincenzo, O. M.. "Prime rings with hypercommuting derivations on a Lie ideal." Rendiconti del Seminario Matematico della Università di Padova 102 (1999): 305-317. <http://eudml.org/doc/108508>.
@article{DeFilippis1999,
author = {De Filippis, V., Di Vincenzo, O. M.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {generalized commutators; prime rings; derivations; Lie ideals; standard polynomial identities},
language = {eng},
pages = {305-317},
publisher = {Seminario Matematico of the University of Padua},
title = {Prime rings with hypercommuting derivations on a Lie ideal},
url = {http://eudml.org/doc/108508},
volume = {102},
year = {1999},
}
TY - JOUR
AU - De Filippis, V.
AU - Di Vincenzo, O. M.
TI - Prime rings with hypercommuting derivations on a Lie ideal
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1999
PB - Seminario Matematico of the University of Padua
VL - 102
SP - 305
EP - 317
LA - eng
KW - generalized commutators; prime rings; derivations; Lie ideals; standard polynomial identities
UR - http://eudml.org/doc/108508
ER -
References
top- [1] K.I. Beidar - W.S. MartindaleIII - V. Mikhalev, Rings with generalized identities, Pure and Applied Math., Dekker, New York (1996). Zbl0847.16001MR1368853
- [2] C.L. Chuang, GPIs having coefficients in Utumi quotient ring, Proc. Amer. Math. Soc.103, no. 3 (1988). Zbl0656.16006MR947646
- [3] C.L. Chuang, Hypercentral derivations, J. Algebra, 166 (1994), pp. 34-71. Zbl0805.16035MR1276816
- [4] C.L. Chuang - J.S. Lin, On a conjecture by Herstein, J. Algebra, 126 (1989), pp. 119-138. Zbl0688.16036MR1023288
- [5] V. DeFILIPPIS - O. M. DI VINCENZO, On the generalized hypercentralizer of a Lie ideal in a prime ring, Rend. Sem. Mat. Univ. Padova, 100 (1998), pp. 283-295. Zbl0921.16011MR1675291
- [6] O.M. Di Vincenzo, On the n-th centralizer of a Lie ideal, Boll. UMI (7), 3-A (1989), pp. 77-85. Zbl0692.16022MR990089
- [7] O.M. Di Vincenzo, Derivations and multilinear polynomials, Rend. Sem. Mat. Univ. Padova, 81 (1989), pp. 209-219. Zbl0738.16016MR1020195
- [8] C. Faith, Lectures on Injective Modules and Quotient Rings, Lecture Notes in Mathematics, 49, Springer-Verlag, New York (1967). Zbl0162.05002MR227206
- [9] I.N. Herstein, Rings with involution, Univ. of Chicago Press, Chicago (1976). Zbl0343.16011MR442017
- [10] I.N. Herstein, On the hypercenter of a ring, J. Algebra, 36 (1975), pp. 151-157. Zbl0313.16036MR371962
- [11] I.N. Herstein, A theorem on invariant subrings, J. Algebra, 83 (1983), pp. 26-32. Zbl0514.16001MR710584
- [12] N. Jacobson - P.I. Algebras, An Introduction, Lecture Notes in Mathematics, no. 44, Springer-Verlag, Berlin/New York (1975). Zbl0326.16013MR369421
- [13] V.K. Kharchenko, Differential identities of prime rings, Algebra and Logic, 17 (1978), pp. 155-168. Zbl0423.16011MR541758
- [14] V.K. Kharchenko, Differential identities of semiprime rings, Algebra and Logic, 18 (1979), pp. 86-119. Zbl0464.16027MR566776
- [15] J. Lambek, Lectures on Rings and Modules, BlaisdellWaltham, MA (1966). Zbl0143.26403MR206032
- [16] T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20, no. 1 (1992), pp. 27-38. Zbl0769.16017MR1166215
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.