Prime rings with hypercommuting derivations on a Lie ideal

V. De Filippis; O. M. Di Vincenzo

Rendiconti del Seminario Matematico della Università di Padova (1999)

  • Volume: 102, page 305-317
  • ISSN: 0041-8994

How to cite

top

De Filippis, V., and Di Vincenzo, O. M.. "Prime rings with hypercommuting derivations on a Lie ideal." Rendiconti del Seminario Matematico della Università di Padova 102 (1999): 305-317. <http://eudml.org/doc/108508>.

@article{DeFilippis1999,
author = {De Filippis, V., Di Vincenzo, O. M.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {generalized commutators; prime rings; derivations; Lie ideals; standard polynomial identities},
language = {eng},
pages = {305-317},
publisher = {Seminario Matematico of the University of Padua},
title = {Prime rings with hypercommuting derivations on a Lie ideal},
url = {http://eudml.org/doc/108508},
volume = {102},
year = {1999},
}

TY - JOUR
AU - De Filippis, V.
AU - Di Vincenzo, O. M.
TI - Prime rings with hypercommuting derivations on a Lie ideal
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1999
PB - Seminario Matematico of the University of Padua
VL - 102
SP - 305
EP - 317
LA - eng
KW - generalized commutators; prime rings; derivations; Lie ideals; standard polynomial identities
UR - http://eudml.org/doc/108508
ER -

References

top
  1. [1] K.I. Beidar - W.S. MartindaleIII - V. Mikhalev, Rings with generalized identities, Pure and Applied Math., Dekker, New York (1996). Zbl0847.16001MR1368853
  2. [2] C.L. Chuang, GPIs having coefficients in Utumi quotient ring, Proc. Amer. Math. Soc.103, no. 3 (1988). Zbl0656.16006MR947646
  3. [3] C.L. Chuang, Hypercentral derivations, J. Algebra, 166 (1994), pp. 34-71. Zbl0805.16035MR1276816
  4. [4] C.L. Chuang - J.S. Lin, On a conjecture by Herstein, J. Algebra, 126 (1989), pp. 119-138. Zbl0688.16036MR1023288
  5. [5] V. DeFILIPPIS - O. M. DI VINCENZO, On the generalized hypercentralizer of a Lie ideal in a prime ring, Rend. Sem. Mat. Univ. Padova, 100 (1998), pp. 283-295. Zbl0921.16011MR1675291
  6. [6] O.M. Di Vincenzo, On the n-th centralizer of a Lie ideal, Boll. UMI (7), 3-A (1989), pp. 77-85. Zbl0692.16022MR990089
  7. [7] O.M. Di Vincenzo, Derivations and multilinear polynomials, Rend. Sem. Mat. Univ. Padova, 81 (1989), pp. 209-219. Zbl0738.16016MR1020195
  8. [8] C. Faith, Lectures on Injective Modules and Quotient Rings, Lecture Notes in Mathematics, 49, Springer-Verlag, New York (1967). Zbl0162.05002MR227206
  9. [9] I.N. Herstein, Rings with involution, Univ. of Chicago Press, Chicago (1976). Zbl0343.16011MR442017
  10. [10] I.N. Herstein, On the hypercenter of a ring, J. Algebra, 36 (1975), pp. 151-157. Zbl0313.16036MR371962
  11. [11] I.N. Herstein, A theorem on invariant subrings, J. Algebra, 83 (1983), pp. 26-32. Zbl0514.16001MR710584
  12. [12] N. Jacobson - P.I. Algebras, An Introduction, Lecture Notes in Mathematics, no. 44, Springer-Verlag, Berlin/New York (1975). Zbl0326.16013MR369421
  13. [13] V.K. Kharchenko, Differential identities of prime rings, Algebra and Logic, 17 (1978), pp. 155-168. Zbl0423.16011MR541758
  14. [14] V.K. Kharchenko, Differential identities of semiprime rings, Algebra and Logic, 18 (1979), pp. 86-119. Zbl0464.16027MR566776
  15. [15] J. Lambek, Lectures on Rings and Modules, BlaisdellWaltham, MA (1966). Zbl0143.26403MR206032
  16. [16] T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20, no. 1 (1992), pp. 27-38. Zbl0769.16017MR1166215

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.