Convergence of approximate solutions to scalar conservation laws by degenerate diffusion
Rendiconti del Seminario Matematico della Università di Padova (1989)
- Volume: 81, page 65-78
- ISSN: 0041-8994
Access Full Article
topHow to cite
topMarcati, Pierangelo. "Convergence of approximate solutions to scalar conservation laws by degenerate diffusion." Rendiconti del Seminario Matematico della Università di Padova 81 (1989): 65-78. <http://eudml.org/doc/108147>.
@article{Marcati1989,
author = {Marcati, Pierangelo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {existence of weak solutions; scalar conservation laws; compensated compactness},
language = {eng},
pages = {65-78},
publisher = {Seminario Matematico of the University of Padua},
title = {Convergence of approximate solutions to scalar conservation laws by degenerate diffusion},
url = {http://eudml.org/doc/108147},
volume = {81},
year = {1989},
}
TY - JOUR
AU - Marcati, Pierangelo
TI - Convergence of approximate solutions to scalar conservation laws by degenerate diffusion
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1989
PB - Seminario Matematico of the University of Padua
VL - 81
SP - 65
EP - 78
LA - eng
KW - existence of weak solutions; scalar conservation laws; compensated compactness
UR - http://eudml.org/doc/108147
ER -
References
top- [1] B. Dacorogna, Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals, Lecture Notes in Mathematics, 922, Springer-Verlag, Berlin-Heidelberg-New York (1982). Zbl0484.46041MR658130
- [2] R.J. Di Perna, Convergence of approximate solutions to conservation laws, Arch. Rat. Mech. Anal., 82 (1983), pp. 27-70. Zbl0519.35054MR684413
- [3] P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM Reg. Conference Series in Applied Mathematics, Philadelphia (1973). Zbl0268.35062MR350216
- [4] P.L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Research Notes in Mathematics, 69, Pitman, London (1982). Zbl0497.35001MR667669
- [5] F. Murat, Compacité par compensation, Ann. Sc. Norm. Pisa, Sci. Fis. Mat., 5 (1978), pp. 489-507. Zbl0399.46022MR506997
- [6] O.A. Oleinik, Discontinuous solutions of nonlinear differential equations, Uspekhi Mat. Nauk (N.S.), 12, n. 3(75) (1957), pp. 3-73 (English transl. in Amer. Math. Soc. Transl. Ser. 2, vol. 26, pp. 95-172). Zbl0131.31803MR94541
- [7] S. Osher - J. Ralston, L1 stability of travelling waves with applications to convective porous media flow, Comm. Pure Appl. Math., 35 (1982), pp. 737-749. Zbl0479.35053MR673828
- [8] L. Tartar, Compensated compactness and applications to partial differential equations, in Research Notes in Mathematics, Nonlinear Analysis and Mechanics: Herriot- Watt Symposium, Vol. 4, ed. R. J. KNOPS, Pitman (1979). Zbl0437.35004MR584398
- [9] L. Tartar, The compensated compactness method applied to systems of conservation laws, in Nonlinear PDEs, J. BALL (Ed.), D. Reidel Publishing Company (1983). Zbl0536.35003MR725524
- [10] L. Van Hove, Sur l'extension de la condition de Legendre du calcul des variations aux integrales multiples à plusieurs fonction inconnues, Nederl. Akad. Weten., 50 (1947), pp. 18-23. Zbl0029.26802MR20223
- [11] A.I. Vol'pert - S.I. Hudjaev, Cauchy problem for degenerate second order quasilinear parabolic equations, Math. USSR Sbornik, 7 (1969), pp. 365-387. Zbl0191.11603
- [12] J.I. Diaz - R. Kersner, Nonexistence d'une des frontières libres dans une équation dégenerée en theorie de la filtration, C. R. Acad. Sc. Paris, 296, Série I (28 mars 1983), pp. 505-508. Zbl0543.35102MR702558
- [13] J.I. Diaz - R. Kersner, On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium, MRC Tech. Summ. Rep. (University of Wisconsin) (1983). Zbl0634.35042
- [14] B.H. Gilding, A nonlinear degenerate parabolic equation, Ann. Sc. Norm. Pisa, Sci. Fis. Mat., 4 (1977), pp. 393-432. Zbl0364.35027MR509720
- [15] B.H. Gilding - L.A. Peletier, The Cauchy problem for an equation in the theory of infiltration, Arch. Rat. Mech. Anal., 61 (1976), pp. 127-140. Zbl0336.76037MR408428
- [16] E. Di Benedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J., 32 (1983), pp. 83-118. Zbl0526.35042MR684758
- [17] O.A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation, Usp. Mat. Nauk., 14 (1959), pp. 165-170 (English transl. in Amer. Math. Soc. Transl. Ser. 2, 23 (1964), pp. 285-290). Zbl0132.33303MR117408
- [18] M. Crandall, The semigroup approach to first order quasilinear equation in several space variables, Israel J. Math., 12 (1972), pp. 108-132. Zbl0246.35018MR316925
- [19] P. Marcati, Approximate solutions to conservation laws via convective parabolic equations, to appearComm. P.D.E. (1988). Zbl0653.35057MR917603
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.