Loading [MathJax]/extensions/MathZoom.js
We present a new semi-discrete central scheme for one-dimensional shallow water flows along channels with non-uniform rectangular cross sections and bottom topography. The scheme preserves the positivity of the water height, and it is preserves steady-states of rest (i.e., it is well-balanced). Along with a detailed description of the scheme, numerous numerical examples are presented for unsteady and steady flows. Comparison with exact solutions illustrate the accuracy and robustness of the numerical...
We present a new semi-discrete central scheme for one-dimensional shallow water flows along channels with non-uniform rectangular cross sections and bottom topography. The scheme preserves the positivity of the water height, and it is preserves steady-states of rest (i.e., it is well-balanced). Along with a detailed description of the scheme, numerous numerical examples are presented for unsteady and steady flows. Comparison with exact solutions illustrate the accuracy and robustness of the numerical...
Skeletal patterning in the vertebrate limb,
i.e., the spatiotemporal regulation of cartilage differentiation
(chondrogenesis) during embryogenesis and regeneration, is one
of the best studied examples of a multicellular developmental process.
Recently [Alber et al., The morphostatic limit for a model of
skeletal pattern formation in the vertebrate limb, Bulletin of
Mathematical Biology, 2008, v70, pp. 460-483], a simplified two-equation
reaction-diffusion system was developed to describe the interaction...
The present paper is devoted to the computation of single phase or two phase flows using the single-fluid approach. Governing equations rely on Euler equations which may be supplemented by conservation laws for mass species. Emphasis is given on numerical modelling with help of Godunov scheme or an approximate form of Godunov scheme called VFRoe-ncv based on velocity and pressure variables. Three distinct classes of closure laws to express the internal energy in terms of pressure, density and additional...
The present paper is devoted to the computation of single phase or
two phase flows using the single-fluid approach. Governing equations
rely on Euler equations which may be supplemented by conservation
laws for mass species. Emphasis is given on numerical modelling
with help of Godunov scheme or an approximate form of Godunov scheme
called VFRoe-ncv based on velocity and pressure variables. Three
distinct classes of closure laws to express the internal energy in
terms of pressure, density...
There is evidence that cancer develops when cells acquire a sequence of mutations that
alter normal cell characteristics. This sequence determines a hierarchy among the cells,
based on how many more mutations they need to accumulate in order to become cancerous.
When cells divide, they exhibit telomere loss and differentiate, which defines another
cell hierarchy, on top of which is the stem cell. We propose a mutation-generation model,
which combines...
The results of a workshop concerning the numerical simulation of the liquid flow around a hydrofoil in non-cavitating and cavitating conditions are presented. This workshop was part of the conference “Mathematical and Numerical aspects of Low Mach Number Flows” (2004) and was aimed to investigate the capabilities of different compressible flow solvers for the low Mach number regime and for flows in which incompressible and supersonic regions are simultaneously present. Different physical models...
The results of a workshop concerning the numerical
simulation of the liquid flow around a hydrofoil in non-cavitating and
cavitating conditions are presented. This workshop was part of the
conference “Mathematical and Numerical aspects of Low Mach Number
Flows” (2004) and was aimed to investigate the capabilities of
different compressible flow solvers for the low Mach number regime and for
flows in which incompressible and supersonic regions are
simultaneously present. Different physical models...
The goal of this paper is to construct a first-order upwind scheme for solving the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water fluids. This is done by generalizing a numerical scheme presented by Bermúdez and Vázquez-Cendón [3, 26, 27] for solving one-layer shallow water equations, consisting in a -scheme with a suitable treatment of the source terms. The difficulty in the two layer system comes from the coupling...
The goal of this paper is to construct a first-order upwind scheme
for solving the system of partial differential equations governing the
one-dimensional flow of two superposed immiscible layers of shallow water
fluids.
This is done by generalizing a numerical scheme presented by
Bermúdez and Vázquez-Cendón [3, 6, 27] for solving one-layer shallow water equations, consisting
in a Q-scheme with a suitable treatment of the source terms.
The difficulty in the two layer system comes from the coupling...
We study a depth-averaged model of gravity-driven flows made of
solid grains and fluid, moving over variable basal surface.
In particular, we are interested in applications
to geophysical flows such as avalanches and debris flows,
which typically contain both solid material and interstitial fluid.
The model system consists of mass and momentum balance equations for the
solid and fluid components, coupled together by both
conservative and non-conservative terms involving the derivatives of the...
In this work, we address the numerical solution of fluid-structure interaction problems. This issue is particularly difficulty to tackle when the fluid and the solid densities are of the same order, for instance as it happens in hemodynamic applications, since fully implicit coupling schemes are required to ensure stability of the resulting method. Thus, at each time step, we have to solve a highly non-linear coupled system, since the fluid domain depends on the unknown displacement of the structure....
In this work, we address the numerical solution of fluid-structure
interaction problems. This issue is particularly difficulty to tackle
when the fluid and the solid densities are of the same order, for
instance as it happens in hemodynamic applications, since fully
implicit coupling schemes are required to ensure stability of the
resulting method. Thus, at each time step, we have to solve a highly
non-linear coupled system, since the fluid domain depends on the
unknown displacement of...
The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE’s, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...
The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE's, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...
Currently displaying 1 –
20 of
108