On bounded solutions of one-dimensional compressible Navier-Stokes equations

V. Lovicar; I. Straškraba; A. Valli

Rendiconti del Seminario Matematico della Università di Padova (1990)

  • Volume: 83, page 81-95
  • ISSN: 0041-8994

How to cite

top

Lovicar, V., Straškraba, I., and Valli, A.. "On bounded solutions of one-dimensional compressible Navier-Stokes equations." Rendiconti del Seminario Matematico della Università di Padova 83 (1990): 81-95. <http://eudml.org/doc/108187>.

@article{Lovicar1990,
author = {Lovicar, V., Straškraba, I., Valli, A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {dissipative systems; compressible Navier-Stokes equations},
language = {eng},
pages = {81-95},
publisher = {Seminario Matematico of the University of Padua},
title = {On bounded solutions of one-dimensional compressible Navier-Stokes equations},
url = {http://eudml.org/doc/108187},
volume = {83},
year = {1990},
}

TY - JOUR
AU - Lovicar, V.
AU - Straškraba, I.
AU - Valli, A.
TI - On bounded solutions of one-dimensional compressible Navier-Stokes equations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1990
PB - Seminario Matematico of the University of Padua
VL - 83
SP - 81
EP - 95
LA - eng
KW - dissipative systems; compressible Navier-Stokes equations
UR - http://eudml.org/doc/108187
ER -

References

top
  1. [1] H. Beirão Da Veiga, An Lp-theory for the n-dimensional, stationary, compressible Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions, Commun. Math. Phys., 109 (1987), pp. 229-248. Zbl0621.76074MR880415
  2. [2] H. Beirão Da Veiga, Long time behavior for one dimensional motion of a general barotropic viscous fluid, Quaderni dell'Istituto di Matematiche Applicate « U. Dini », Università di Pisa, preprint No. 7 (1988). Arch. Rational Mech. Anal., submitted. 
  3. [3] H. Beirão Da Veiga, The stability of one dimensional stationary flows of compressible viscous fluids, Quaderni dell'Istituto di Matematiche Applicate « U. Dini », Università di Pisa, preprint No. 9, (1988). Ann. Inst. H. Poincaré, Anal. Non Linéaire, to appear. Zbl0712.76074MR1067775
  4. [4] A.V. Kazhikhov, Stabilization of solutions of an initial-boundary-value problem for the equations of motion of a barotropic viscous fluid, Differ. Uravn., 15 (1979), pp. 662-667 Russian = Differ. Equations, 15 (1979), pp. 463-467. Zbl0426.35025MR534027
  5. [5] V.V. Shelukhin, Periodic flows of a viscous gas, Din. Sploshnoj Sredy, 42 (1979), pp. 80-102, Russian. MR602221
  6. [6] V.V. Shelukhin, Bounded, almost-periodic solutions of a viscous gas equation, Din. Sploshnoj Sredy, 44 (1980), pp. 147-163, Russian. Zbl0512.76073MR639194
  7. [7] I Straškraba - A. Valli, Asymptotic behaviour of the density for one-dimensional Navier-Stokes equations, Manuscripta Math., 62 (1988), pp. 401-416. Zbl0687.35074MR971685

NotesEmbed ?

top

You must be logged in to post comments.