On bounded solutions of one-dimensional compressible Navier-Stokes equations
V. Lovicar; I. Straškraba; A. Valli
Rendiconti del Seminario Matematico della Università di Padova (1990)
- Volume: 83, page 81-95
- ISSN: 0041-8994
Access Full Article
topHow to cite
topReferences
top- [1] H. Beirão Da Veiga, An Lp-theory for the n-dimensional, stationary, compressible Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions, Commun. Math. Phys., 109 (1987), pp. 229-248. Zbl0621.76074MR880415
- [2] H. Beirão Da Veiga, Long time behavior for one dimensional motion of a general barotropic viscous fluid, Quaderni dell'Istituto di Matematiche Applicate « U. Dini », Università di Pisa, preprint No. 7 (1988). Arch. Rational Mech. Anal., submitted.
- [3] H. Beirão Da Veiga, The stability of one dimensional stationary flows of compressible viscous fluids, Quaderni dell'Istituto di Matematiche Applicate « U. Dini », Università di Pisa, preprint No. 9, (1988). Ann. Inst. H. Poincaré, Anal. Non Linéaire, to appear. Zbl0712.76074MR1067775
- [4] A.V. Kazhikhov, Stabilization of solutions of an initial-boundary-value problem for the equations of motion of a barotropic viscous fluid, Differ. Uravn., 15 (1979), pp. 662-667 Russian = Differ. Equations, 15 (1979), pp. 463-467. Zbl0426.35025MR534027
- [5] V.V. Shelukhin, Periodic flows of a viscous gas, Din. Sploshnoj Sredy, 42 (1979), pp. 80-102, Russian. MR602221
- [6] V.V. Shelukhin, Bounded, almost-periodic solutions of a viscous gas equation, Din. Sploshnoj Sredy, 44 (1980), pp. 147-163, Russian. Zbl0512.76073MR639194
- [7] I Straškraba - A. Valli, Asymptotic behaviour of the density for one-dimensional Navier-Stokes equations, Manuscripta Math., 62 (1988), pp. 401-416. Zbl0687.35074MR971685