On bounded solutions of one-dimensional compressible Navier-Stokes equations

V. Lovicar; I. Straškraba; A. Valli

Rendiconti del Seminario Matematico della Università di Padova (1990)

  • Volume: 83, page 81-95
  • ISSN: 0041-8994

How to cite

top

Lovicar, V., Straškraba, I., and Valli, A.. "On bounded solutions of one-dimensional compressible Navier-Stokes equations." Rendiconti del Seminario Matematico della Università di Padova 83 (1990): 81-95. <http://eudml.org/doc/108187>.

@article{Lovicar1990,
author = {Lovicar, V., Straškraba, I., Valli, A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {dissipative systems; compressible Navier-Stokes equations},
language = {eng},
pages = {81-95},
publisher = {Seminario Matematico of the University of Padua},
title = {On bounded solutions of one-dimensional compressible Navier-Stokes equations},
url = {http://eudml.org/doc/108187},
volume = {83},
year = {1990},
}

TY - JOUR
AU - Lovicar, V.
AU - Straškraba, I.
AU - Valli, A.
TI - On bounded solutions of one-dimensional compressible Navier-Stokes equations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1990
PB - Seminario Matematico of the University of Padua
VL - 83
SP - 81
EP - 95
LA - eng
KW - dissipative systems; compressible Navier-Stokes equations
UR - http://eudml.org/doc/108187
ER -

References

top
  1. [1] H. Beirão Da Veiga, An Lp-theory for the n-dimensional, stationary, compressible Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions, Commun. Math. Phys., 109 (1987), pp. 229-248. Zbl0621.76074MR880415
  2. [2] H. Beirão Da Veiga, Long time behavior for one dimensional motion of a general barotropic viscous fluid, Quaderni dell'Istituto di Matematiche Applicate « U. Dini », Università di Pisa, preprint No. 7 (1988). Arch. Rational Mech. Anal., submitted. 
  3. [3] H. Beirão Da Veiga, The stability of one dimensional stationary flows of compressible viscous fluids, Quaderni dell'Istituto di Matematiche Applicate « U. Dini », Università di Pisa, preprint No. 9, (1988). Ann. Inst. H. Poincaré, Anal. Non Linéaire, to appear. Zbl0712.76074MR1067775
  4. [4] A.V. Kazhikhov, Stabilization of solutions of an initial-boundary-value problem for the equations of motion of a barotropic viscous fluid, Differ. Uravn., 15 (1979), pp. 662-667 Russian = Differ. Equations, 15 (1979), pp. 463-467. Zbl0426.35025MR534027
  5. [5] V.V. Shelukhin, Periodic flows of a viscous gas, Din. Sploshnoj Sredy, 42 (1979), pp. 80-102, Russian. MR602221
  6. [6] V.V. Shelukhin, Bounded, almost-periodic solutions of a viscous gas equation, Din. Sploshnoj Sredy, 44 (1980), pp. 147-163, Russian. Zbl0512.76073MR639194
  7. [7] I Straškraba - A. Valli, Asymptotic behaviour of the density for one-dimensional Navier-Stokes equations, Manuscripta Math., 62 (1988), pp. 401-416. Zbl0687.35074MR971685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.