The stability of one dimensional stationary flows of compressible viscous fluids

H. Beirão da Veiga

Annales de l'I.H.P. Analyse non linéaire (1990)

  • Volume: 7, Issue: 4, page 259-268
  • ISSN: 0294-1449

How to cite

top

Beirão da Veiga, H.. "The stability of one dimensional stationary flows of compressible viscous fluids." Annales de l'I.H.P. Analyse non linéaire 7.4 (1990): 259-268. <http://eudml.org/doc/78223>.

@article{BeirãodaVeiga1990,
author = {Beirão da Veiga, H.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {compressible fluids; one-dimensional flow; stationary solution; existence and uniqueness of the global solution},
language = {eng},
number = {4},
pages = {259-268},
publisher = {Gauthier-Villars},
title = {The stability of one dimensional stationary flows of compressible viscous fluids},
url = {http://eudml.org/doc/78223},
volume = {7},
year = {1990},
}

TY - JOUR
AU - Beirão da Veiga, H.
TI - The stability of one dimensional stationary flows of compressible viscous fluids
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 4
SP - 259
EP - 268
LA - eng
KW - compressible fluids; one-dimensional flow; stationary solution; existence and uniqueness of the global solution
UR - http://eudml.org/doc/78223
ER -

References

top
  1. [1] H. Beirão da veiga, An LP-theory for the n-dimensional, stationary, compressible Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions. Comm. Math. Phys., t. 109, 1987, p. 229-248. Zbl0621.76074MR880415
  2. [2] H. Beirão da veiga, Long time behaviour for one dimensional motion of a general barotropic viscous fluid, Arch. Rat. Mech. Analysis, t. 108, 1989, p. 141-160. Zbl0704.76020MR1011555
  3. [3] A.V. Kazhikhov, Stabilization of solutions of an initial-boundary value problem for the equations of motion of a barotropic viscous fluid, translation from russian inDiff. Eq., t. 15, 1979, p. 463-467. Zbl0426.35025
  4. [4] I. Straškraba and A. Vall, Asymptotic behaviour of the density for one-dimensional Navier-Stokes equations, Manuscripta Math., t. 62, 1988, p. 401-416. Zbl0687.35074MR971685
  5. [5] A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. Ann. Sci. Norm. Sup. Pisa, 1984, p. 607-647. Zbl0542.35062MR753158

NotesEmbed ?

top

You must be logged in to post comments.