The stability of one dimensional stationary flows of compressible viscous fluids

H. Beirão da Veiga

Annales de l'I.H.P. Analyse non linéaire (1990)

  • Volume: 7, Issue: 4, page 259-268
  • ISSN: 0294-1449

How to cite

top

Beirão da Veiga, H.. "The stability of one dimensional stationary flows of compressible viscous fluids." Annales de l'I.H.P. Analyse non linéaire 7.4 (1990): 259-268. <http://eudml.org/doc/78223>.

@article{BeirãodaVeiga1990,
author = {Beirão da Veiga, H.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {compressible fluids; one-dimensional flow; stationary solution; existence and uniqueness of the global solution},
language = {eng},
number = {4},
pages = {259-268},
publisher = {Gauthier-Villars},
title = {The stability of one dimensional stationary flows of compressible viscous fluids},
url = {http://eudml.org/doc/78223},
volume = {7},
year = {1990},
}

TY - JOUR
AU - Beirão da Veiga, H.
TI - The stability of one dimensional stationary flows of compressible viscous fluids
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 4
SP - 259
EP - 268
LA - eng
KW - compressible fluids; one-dimensional flow; stationary solution; existence and uniqueness of the global solution
UR - http://eudml.org/doc/78223
ER -

References

top
  1. [1] H. Beirão da veiga, An LP-theory for the n-dimensional, stationary, compressible Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions. Comm. Math. Phys., t. 109, 1987, p. 229-248. Zbl0621.76074MR880415
  2. [2] H. Beirão da veiga, Long time behaviour for one dimensional motion of a general barotropic viscous fluid, Arch. Rat. Mech. Analysis, t. 108, 1989, p. 141-160. Zbl0704.76020MR1011555
  3. [3] A.V. Kazhikhov, Stabilization of solutions of an initial-boundary value problem for the equations of motion of a barotropic viscous fluid, translation from russian inDiff. Eq., t. 15, 1979, p. 463-467. Zbl0426.35025
  4. [4] I. Straškraba and A. Vall, Asymptotic behaviour of the density for one-dimensional Navier-Stokes equations, Manuscripta Math., t. 62, 1988, p. 401-416. Zbl0687.35074MR971685
  5. [5] A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. Ann. Sci. Norm. Sup. Pisa, 1984, p. 607-647. Zbl0542.35062MR753158

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.