An abstract version of Herz' imbedding theorem

Stefano Meda; Rita Pini

Rendiconti del Seminario Matematico della Università di Padova (1991)

  • Volume: 86, page 37-46
  • ISSN: 0041-8994

How to cite

top

Meda, Stefano, and Pini, Rita. "An abstract version of Herz' imbedding theorem." Rendiconti del Seminario Matematico della Università di Padova 86 (1991): 37-46. <http://eudml.org/doc/108240>.

@article{Meda1991,
author = {Meda, Stefano, Pini, Rita},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Herz's imbedding theorem; unimodular locally compact group; approximate identity; Lipschitz spaces; Lipschitz scale},
language = {eng},
pages = {37-46},
publisher = {Seminario Matematico of the University of Padua},
title = {An abstract version of Herz' imbedding theorem},
url = {http://eudml.org/doc/108240},
volume = {86},
year = {1991},
}

TY - JOUR
AU - Meda, Stefano
AU - Pini, Rita
TI - An abstract version of Herz' imbedding theorem
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1991
PB - Seminario Matematico of the University of Padua
VL - 86
SP - 37
EP - 46
LA - eng
KW - Herz's imbedding theorem; unimodular locally compact group; approximate identity; Lipschitz spaces; Lipschitz scale
UR - http://eudml.org/doc/108240
ER -

References

top
  1. [1] J. Bergh - J. LÖFSTRÖM, Interpolation Spaces, Springer Verlag, Berlin-Heidelberg- New York, 1976. Zbl0344.46071MR482275
  2. [2] L. De Michele - I.R. Inglis, Lp estimates for strongly singular integrals on spaces of homogeneous type, J. Funct. Anal., 39 (1980), pp. 1-15. Zbl0461.46039MR593784
  3. [3] G.I. Gaudry - R. Pini, Bernstein's theorem for compact connected Lie groups, Math. Proc. Camb. Phil. Soc., 99 (1986), pp. 297-305. Zbl0612.43011MR817671
  4. [4] G.I. Gaudry - S. Meda - R. Pini, A heat semigroup version of Bernstein's theorem on Lie groups, Mh. Math., 110 (1990), pp. 101-114. Zbl0719.43008MR1076325
  5. [5] S. Giulini, Approximation and Besov spaces on stratified groups, Proc. Amer. Math. Soc., 96 (1986), pp. 569-578. Zbl0605.41013MR826483
  6. [6] C. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transform, J. Math. Mech., 18 (1968), pp. 283-323. Zbl0177.15701MR438109
  7. [7] L. Hörmander, Estimates for translation invariant operators in Lp spaces, Acta Math., 104 (1960), pp. 93-104. Zbl0093.11402MR121655
  8. [8] R. Hunt, On L(p, q) spaces, Ens. Math., 12 (1966), pp. 249-275. Zbl0181.40301MR223874
  9. [9] I.R. Inglis, Bernstein's theorem and the Fourier algebra of the Heisenberg group, Boll. Un. Mat. It. (VI), 2-A (1983), pp. 39-46. Zbl0528.43008MR694742
  10. [10] S. Meda - R. PINI, Lipschitz spaces on compact Lie groups, Mh. Math., 105 (1988), pp. 177-191. Zbl0639.43003MR939940
  11. [11] J. Peetre, NewThoughts on Besov Spaces, Duke Univ. Press, 1976. Zbl0356.46038MR461123
  12. [12] P.M. Soardi, On nonisotropic Lipschitz spaces, in Lecture Notes in Math., 992, 115-138Springer Verlag, Berlin-Heidelberg- New York. Zbl0522.46018MR729350
  13. [13] E.M. Stein, Singular Integrals and the DifferentiabilityProperties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501MR290095
  14. [14] E.M. Stein - G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, N.J., 1971. Zbl0232.42007MR304972
  15. [15] M.H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean n-spaces I, J. Math. Mech., 13 (1964), pp. 407-480. Zbl0132.09402MR163159

NotesEmbed ?

top

You must be logged in to post comments.