An abstract version of Herz' imbedding theorem

Stefano Meda; Rita Pini

Rendiconti del Seminario Matematico della Università di Padova (1991)

  • Volume: 86, page 37-46
  • ISSN: 0041-8994

How to cite

top

Meda, Stefano, and Pini, Rita. "An abstract version of Herz' imbedding theorem." Rendiconti del Seminario Matematico della Università di Padova 86 (1991): 37-46. <http://eudml.org/doc/108240>.

@article{Meda1991,
author = {Meda, Stefano, Pini, Rita},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Herz's imbedding theorem; unimodular locally compact group; approximate identity; Lipschitz spaces; Lipschitz scale},
language = {eng},
pages = {37-46},
publisher = {Seminario Matematico of the University of Padua},
title = {An abstract version of Herz' imbedding theorem},
url = {http://eudml.org/doc/108240},
volume = {86},
year = {1991},
}

TY - JOUR
AU - Meda, Stefano
AU - Pini, Rita
TI - An abstract version of Herz' imbedding theorem
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1991
PB - Seminario Matematico of the University of Padua
VL - 86
SP - 37
EP - 46
LA - eng
KW - Herz's imbedding theorem; unimodular locally compact group; approximate identity; Lipschitz spaces; Lipschitz scale
UR - http://eudml.org/doc/108240
ER -

References

top
  1. [1] J. Bergh - J. LÖFSTRÖM, Interpolation Spaces, Springer Verlag, Berlin-Heidelberg- New York, 1976. Zbl0344.46071MR482275
  2. [2] L. De Michele - I.R. Inglis, Lp estimates for strongly singular integrals on spaces of homogeneous type, J. Funct. Anal., 39 (1980), pp. 1-15. Zbl0461.46039MR593784
  3. [3] G.I. Gaudry - R. Pini, Bernstein's theorem for compact connected Lie groups, Math. Proc. Camb. Phil. Soc., 99 (1986), pp. 297-305. Zbl0612.43011MR817671
  4. [4] G.I. Gaudry - S. Meda - R. Pini, A heat semigroup version of Bernstein's theorem on Lie groups, Mh. Math., 110 (1990), pp. 101-114. Zbl0719.43008MR1076325
  5. [5] S. Giulini, Approximation and Besov spaces on stratified groups, Proc. Amer. Math. Soc., 96 (1986), pp. 569-578. Zbl0605.41013MR826483
  6. [6] C. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transform, J. Math. Mech., 18 (1968), pp. 283-323. Zbl0177.15701MR438109
  7. [7] L. Hörmander, Estimates for translation invariant operators in Lp spaces, Acta Math., 104 (1960), pp. 93-104. Zbl0093.11402MR121655
  8. [8] R. Hunt, On L(p, q) spaces, Ens. Math., 12 (1966), pp. 249-275. Zbl0181.40301MR223874
  9. [9] I.R. Inglis, Bernstein's theorem and the Fourier algebra of the Heisenberg group, Boll. Un. Mat. It. (VI), 2-A (1983), pp. 39-46. Zbl0528.43008MR694742
  10. [10] S. Meda - R. PINI, Lipschitz spaces on compact Lie groups, Mh. Math., 105 (1988), pp. 177-191. Zbl0639.43003MR939940
  11. [11] J. Peetre, NewThoughts on Besov Spaces, Duke Univ. Press, 1976. Zbl0356.46038MR461123
  12. [12] P.M. Soardi, On nonisotropic Lipschitz spaces, in Lecture Notes in Math., 992, 115-138Springer Verlag, Berlin-Heidelberg- New York. Zbl0522.46018MR729350
  13. [13] E.M. Stein, Singular Integrals and the DifferentiabilityProperties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501MR290095
  14. [14] E.M. Stein - G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, N.J., 1971. Zbl0232.42007MR304972
  15. [15] M.H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean n-spaces I, J. Math. Mech., 13 (1964), pp. 407-480. Zbl0132.09402MR163159

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.