Harnack's inequality for quasilinear elliptic equations with coefficients in Morrey spaces
Rendiconti del Seminario Matematico della Università di Padova (1993)
- Volume: 89, page 87-95
- ISSN: 0041-8994
Access Full Article
topHow to cite
topZamboni, Pietro. "Harnack's inequality for quasilinear elliptic equations with coefficients in Morrey spaces." Rendiconti del Seminario Matematico della Università di Padova 89 (1993): 87-95. <http://eudml.org/doc/108295>.
@article{Zamboni1993,
author = {Zamboni, Pietro},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {quasilinear elliptic equations; Harnack's inequality; Morrey spaces},
language = {eng},
pages = {87-95},
publisher = {Seminario Matematico of the University of Padua},
title = {Harnack's inequality for quasilinear elliptic equations with coefficients in Morrey spaces},
url = {http://eudml.org/doc/108295},
volume = {89},
year = {1993},
}
TY - JOUR
AU - Zamboni, Pietro
TI - Harnack's inequality for quasilinear elliptic equations with coefficients in Morrey spaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1993
PB - Seminario Matematico of the University of Padua
VL - 89
SP - 87
EP - 95
LA - eng
KW - quasilinear elliptic equations; Harnack's inequality; Morrey spaces
UR - http://eudml.org/doc/108295
ER -
References
top- [1] M. Aizenman - B. SIMON, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math., 35, no. 2 (1982), pp. 209-273. Zbl0459.60069MR644024
- [2] F. Chiarenza - M. FRASCA, A remark on a paper by C. Fefferman, Proc. Amer. Math. Soc., 108 (1990), pp. 407-409. Zbl0694.46029MR1027825
- [3] F. Chiarenza - E. FABES - N. GAROFALO, Harnack's inequality for Schrödinger operators and the continuity of solutions, Proc. Amer. Math. Soc., 98 (1986), pp. 415-425. Zbl0626.35022MR857933
- [4] G. Di Fazio, Hölder continuity of solutions for some Schrödinger equation, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 173-183. Zbl0674.35017MR964029
- [5] A.M. Hinz - H. Kalf, Subsolution estimates and Harnack's inequality for Schrödinger operators, Journal Reine Angew. Math., 404 (1990), pp. 118-134. Zbl0779.35026MR1037432
- [6] O.A. Ladizhenskaia - N. Ural'ceva, Linear and Quasilinear Elliptic Equations, Academic Press (1968). Zbl0164.13002MR244627
- [7] L. Piccinini, Inclusioni tra spazi di Morrey, Boll. Un. Mat. Ital. (4), 2 (1969), pp. 95-99. Zbl0181.13403MR244759
- [8] J. Serrin, Local behaviour of solutions of quasilinear equations, Acta Math., 113 (1965), pp. 302-347. Zbl0128.09101
- [9] C. Simader, An elementary proof of Harnack's inequality for Schrödinger operators and related topics, Math. Z., 203 (1990), pp. 129-152. Zbl0697.35017MR1030712
- [10] G. Stampacchia, Le probleme di Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus, Ann. Inst. Fourier, Grenoble, 151 (1965), pp. 189-258. Zbl0151.15401MR192177
- [11] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., 20 (1967), pp. 721-747. Zbl0153.42703MR226198
- [12] P. Zamboni, Some function spaces an elliptic partial differential equations, Le Matematiche, 42 (1987), pp. 171-178. Zbl0701.35033MR1030915
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.