Harnack's inequality for quasilinear elliptic equations with coefficients in Morrey spaces

Pietro Zamboni

Rendiconti del Seminario Matematico della Università di Padova (1993)

  • Volume: 89, page 87-95
  • ISSN: 0041-8994

How to cite

top

Zamboni, Pietro. "Harnack's inequality for quasilinear elliptic equations with coefficients in Morrey spaces." Rendiconti del Seminario Matematico della Università di Padova 89 (1993): 87-95. <http://eudml.org/doc/108295>.

@article{Zamboni1993,
author = {Zamboni, Pietro},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {quasilinear elliptic equations; Harnack's inequality; Morrey spaces},
language = {eng},
pages = {87-95},
publisher = {Seminario Matematico of the University of Padua},
title = {Harnack's inequality for quasilinear elliptic equations with coefficients in Morrey spaces},
url = {http://eudml.org/doc/108295},
volume = {89},
year = {1993},
}

TY - JOUR
AU - Zamboni, Pietro
TI - Harnack's inequality for quasilinear elliptic equations with coefficients in Morrey spaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1993
PB - Seminario Matematico of the University of Padua
VL - 89
SP - 87
EP - 95
LA - eng
KW - quasilinear elliptic equations; Harnack's inequality; Morrey spaces
UR - http://eudml.org/doc/108295
ER -

References

top
  1. [1] M. Aizenman - B. SIMON, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math., 35, no. 2 (1982), pp. 209-273. Zbl0459.60069MR644024
  2. [2] F. Chiarenza - M. FRASCA, A remark on a paper by C. Fefferman, Proc. Amer. Math. Soc., 108 (1990), pp. 407-409. Zbl0694.46029MR1027825
  3. [3] F. Chiarenza - E. FABES - N. GAROFALO, Harnack's inequality for Schrödinger operators and the continuity of solutions, Proc. Amer. Math. Soc., 98 (1986), pp. 415-425. Zbl0626.35022MR857933
  4. [4] G. Di Fazio, Hölder continuity of solutions for some Schrödinger equation, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 173-183. Zbl0674.35017MR964029
  5. [5] A.M. Hinz - H. Kalf, Subsolution estimates and Harnack's inequality for Schrödinger operators, Journal Reine Angew. Math., 404 (1990), pp. 118-134. Zbl0779.35026MR1037432
  6. [6] O.A. Ladizhenskaia - N. Ural'ceva, Linear and Quasilinear Elliptic Equations, Academic Press (1968). Zbl0164.13002MR244627
  7. [7] L. Piccinini, Inclusioni tra spazi di Morrey, Boll. Un. Mat. Ital. (4), 2 (1969), pp. 95-99. Zbl0181.13403MR244759
  8. [8] J. Serrin, Local behaviour of solutions of quasilinear equations, Acta Math., 113 (1965), pp. 302-347. Zbl0128.09101
  9. [9] C. Simader, An elementary proof of Harnack's inequality for Schrödinger operators and related topics, Math. Z., 203 (1990), pp. 129-152. Zbl0697.35017MR1030712
  10. [10] G. Stampacchia, Le probleme di Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus, Ann. Inst. Fourier, Grenoble, 151 (1965), pp. 189-258. Zbl0151.15401MR192177
  11. [11] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., 20 (1967), pp. 721-747. Zbl0153.42703MR226198
  12. [12] P. Zamboni, Some function spaces an elliptic partial differential equations, Le Matematiche, 42 (1987), pp. 171-178. Zbl0701.35033MR1030915

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.