Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces
Giuseppe Di Fazio; Pietro Zamboni
Bollettino dell'Unione Matematica Italiana (2006)
- Volume: 9-B, Issue: 2, page 485-504
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topDi Fazio, Giuseppe, and Zamboni, Pietro. "Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces." Bollettino dell'Unione Matematica Italiana 9-B.2 (2006): 485-504. <http://eudml.org/doc/289621>.
@article{DiFazio2006,
abstract = {We prove Harnack inequality for weak solutions to quasilinear subelliptic equation of the following kind \begin\{equation*\}\tag\{*\}\sum\_\{J=1\}^\{m\} X\_\{j\}^\{*\}A\_\{j\}(x, u(x), Xu(x)) + B(x, u(x), Xu(x)) = 0,\end\{equation*\} where $X_\{1\}, \ldots, X_\{m\}$ are a system of non commutative locally Lipschitz vector fields. As a consequence, the weak solutions of (*) are continuous.},
author = {Di Fazio, Giuseppe, Zamboni, Pietro},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {485-504},
publisher = {Unione Matematica Italiana},
title = {Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces},
url = {http://eudml.org/doc/289621},
volume = {9-B},
year = {2006},
}
TY - JOUR
AU - Di Fazio, Giuseppe
AU - Zamboni, Pietro
TI - Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/6//
PB - Unione Matematica Italiana
VL - 9-B
IS - 2
SP - 485
EP - 504
AB - We prove Harnack inequality for weak solutions to quasilinear subelliptic equation of the following kind \begin{equation*}\tag{*}\sum_{J=1}^{m} X_{j}^{*}A_{j}(x, u(x), Xu(x)) + B(x, u(x), Xu(x)) = 0,\end{equation*} where $X_{1}, \ldots, X_{m}$ are a system of non commutative locally Lipschitz vector fields. As a consequence, the weak solutions of (*) are continuous.
LA - eng
UR - http://eudml.org/doc/289621
ER -
References
top- BUCKLEY, S., Inequalities of John Nirenberg type in doubling spaces, J. Anal. Math., 79 (1999), 215-240. Zbl0990.46019MR1749313DOI10.1007/BF02788242
- CAPOGNA, L. - DANIELLI, D. - GAROFALO, N., An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. P.D.E., 18 (1993), 1765-1794. Zbl0802.35024MR1239930DOI10.1080/03605309308820992
- CHIARENZA, F., Regularity for solutions of quasilinear elliptic equations under minimal assumptions, Potential Analysis, 4 (1995), 325-334. Zbl0838.35022MR1354887DOI10.1007/BF01053450
- CHIARENZA, F. - FABES, E. - GAROFALO, N., Harnack's inequality for Schrödinger operators and continuity of solutions, Proc. A.M.S., 98 (1986), 415-425. Zbl0626.35022MR857933DOI10.2307/2046194
- DANIELLI, D., A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, Potential Analysis, 115 (1999), 387-413. Zbl0940.35057MR1719837DOI10.1023/A:1008674906902
- DANIELLI, D. - GAROFALO, N. - NHIEU, D., Trace inequalities for Carnot-Caratheodory spaces and applications, Ann. Scuola Norm. Sup. Pisa, 4 (1998), 195-252. Zbl0938.46036MR1664688
- DI FAZIO, G. - ZAMBONI, P., A Fefferman-Poincaré type inequality for Carnot-Carathéodory vector fields, Proc. A.M.S., 130 (2002), 2655-2660. Zbl1031.46038MR1900873DOI10.1090/S0002-9939-02-06394-3
- DI FAZIO, G. - ZAMBONI, P.Hölder continuity for quasilinear subelliptic equations in Carnot Caratheodory spaces, Math. Nachr.272 (2004), 3-10. Zbl1149.35347MR2079757DOI10.1002/mana.200310185
- LADYZHENSKAYA, O.A. - URALCEVA, N., Linear and quasilinear elliptic equations, Academic Press (1968).
- LIEBERMAN, G., Sharp forms of Estimates for Subsolutions and Supersolutions of Quasilinear Elliptic Equations Involving Measures, Comm. P.D.E., 18 (1993), 1191-1212. Zbl0802.35041MR1233190DOI10.1080/03605309308820969
- RAGUSA, M.A. - ZAMBONI, P., Local regularity of solutions to quasilinear elliptic equations with general structure, Communications in Applied Analysis, 3 (1999), 131-147. Zbl0922.35050MR1669745
- RAKOTOSON, J.M., Quasilinear equations and Spaces of Campanato-Morrey type, Comm. P.D.E., 16 (1991), 1155-1182. Zbl0827.35021MR1116857DOI10.1080/03605309108820793
- RAKOTOSON, J.M. - ZIEMER, W.P., Local behavior of solutions of quasilinear elliptic equations with general structure, Trans. A. M. S., 319 (1990), 747-764. Zbl0708.35023MR998128DOI10.2307/2001263
- SERRIN, J., Local behavior of solutions of quasilinear equations, Acta Math., 111 (1964), 247-302. Zbl0128.09101MR170096DOI10.1007/BF02391014
- SERRIN, J. - ZOU, H., Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189, n. 1 (2002), 79-142. Zbl1059.35040MR1946918DOI10.1007/BF02392645
- ZAMBONI, P., Harnack's inequality for quasilinear elliptic equations with coefficients in Morrey spaces, Rend. Sem. Mat. Univ. Padova, 89 (1993), 87-96. Zbl0802.35043MR1229045
- ZAMBONI, P., Local boundedness of solutions of quasilinear elliptic equations with coefficients in Morrey spaces, Boll. Un. Mat. It., 8-B (1994), 985-997. Zbl0827.35040MR1315830
- ZAMBONI, P., Local behavior of solutions of quasilinear elliptic equations with coefficients in Morrey Spaces, Rendiconti di Matematica, Serie VII, 15 (1995), 251-262. Zbl0832.35046MR1339243
- ZAMBONI, P., Unique continuation for non-negative solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc., 64 (2001), 149-156. Zbl0989.47037MR1848087DOI10.1017/S0004972700019766
- ZAMBONI, P.The Harnack inequality for quasilinear elliptic equations under minimal assumptions, Manuscripta Math., 102 (2000), 311-323. Zbl0954.35063MR1777522DOI10.1007/s002290050002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.