Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces

Giuseppe Di Fazio; Pietro Zamboni

Bollettino dell'Unione Matematica Italiana (2006)

  • Volume: 9-B, Issue: 2, page 485-504
  • ISSN: 0392-4033

Abstract

top
We prove Harnack inequality for weak solutions to quasilinear subelliptic equation of the following kind J = 1 m X j * A j ( x , u ( x ) , X u ( x ) ) + B ( x , u ( x ) , X u ( x ) ) = 0 , where X 1 , , X m are a system of non commutative locally Lipschitz vector fields. As a consequence, the weak solutions of (*) are continuous.

How to cite

top

Di Fazio, Giuseppe, and Zamboni, Pietro. "Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces." Bollettino dell'Unione Matematica Italiana 9-B.2 (2006): 485-504. <http://eudml.org/doc/289621>.

@article{DiFazio2006,
abstract = {We prove Harnack inequality for weak solutions to quasilinear subelliptic equation of the following kind \begin\{equation*\}\tag\{*\}\sum\_\{J=1\}^\{m\} X\_\{j\}^\{*\}A\_\{j\}(x, u(x), Xu(x)) + B(x, u(x), Xu(x)) = 0,\end\{equation*\} where $X_\{1\}, \ldots, X_\{m\}$ are a system of non commutative locally Lipschitz vector fields. As a consequence, the weak solutions of (*) are continuous.},
author = {Di Fazio, Giuseppe, Zamboni, Pietro},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {485-504},
publisher = {Unione Matematica Italiana},
title = {Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces},
url = {http://eudml.org/doc/289621},
volume = {9-B},
year = {2006},
}

TY - JOUR
AU - Di Fazio, Giuseppe
AU - Zamboni, Pietro
TI - Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/6//
PB - Unione Matematica Italiana
VL - 9-B
IS - 2
SP - 485
EP - 504
AB - We prove Harnack inequality for weak solutions to quasilinear subelliptic equation of the following kind \begin{equation*}\tag{*}\sum_{J=1}^{m} X_{j}^{*}A_{j}(x, u(x), Xu(x)) + B(x, u(x), Xu(x)) = 0,\end{equation*} where $X_{1}, \ldots, X_{m}$ are a system of non commutative locally Lipschitz vector fields. As a consequence, the weak solutions of (*) are continuous.
LA - eng
UR - http://eudml.org/doc/289621
ER -

References

top
  1. BUCKLEY, S., Inequalities of John Nirenberg type in doubling spaces, J. Anal. Math., 79 (1999), 215-240. Zbl0990.46019MR1749313DOI10.1007/BF02788242
  2. CAPOGNA, L. - DANIELLI, D. - GAROFALO, N., An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. P.D.E., 18 (1993), 1765-1794. Zbl0802.35024MR1239930DOI10.1080/03605309308820992
  3. CHIARENZA, F., Regularity for solutions of quasilinear elliptic equations under minimal assumptions, Potential Analysis, 4 (1995), 325-334. Zbl0838.35022MR1354887DOI10.1007/BF01053450
  4. CHIARENZA, F. - FABES, E. - GAROFALO, N., Harnack's inequality for Schrödinger operators and continuity of solutions, Proc. A.M.S., 98 (1986), 415-425. Zbl0626.35022MR857933DOI10.2307/2046194
  5. DANIELLI, D., A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, Potential Analysis, 115 (1999), 387-413. Zbl0940.35057MR1719837DOI10.1023/A:1008674906902
  6. DANIELLI, D. - GAROFALO, N. - NHIEU, D., Trace inequalities for Carnot-Caratheodory spaces and applications, Ann. Scuola Norm. Sup. Pisa, 4 (1998), 195-252. Zbl0938.46036MR1664688
  7. DI FAZIO, G. - ZAMBONI, P., A Fefferman-Poincaré type inequality for Carnot-Carathéodory vector fields, Proc. A.M.S., 130 (2002), 2655-2660. Zbl1031.46038MR1900873DOI10.1090/S0002-9939-02-06394-3
  8. DI FAZIO, G. - ZAMBONI, P.Hölder continuity for quasilinear subelliptic equations in Carnot Caratheodory spaces, Math. Nachr.272 (2004), 3-10. Zbl1149.35347MR2079757DOI10.1002/mana.200310185
  9. LADYZHENSKAYA, O.A. - URALCEVA, N., Linear and quasilinear elliptic equations, Academic Press (1968). 
  10. LIEBERMAN, G., Sharp forms of Estimates for Subsolutions and Supersolutions of Quasilinear Elliptic Equations Involving Measures, Comm. P.D.E., 18 (1993), 1191-1212. Zbl0802.35041MR1233190DOI10.1080/03605309308820969
  11. RAGUSA, M.A. - ZAMBONI, P., Local regularity of solutions to quasilinear elliptic equations with general structure, Communications in Applied Analysis, 3 (1999), 131-147. Zbl0922.35050MR1669745
  12. RAKOTOSON, J.M., Quasilinear equations and Spaces of Campanato-Morrey type, Comm. P.D.E., 16 (1991), 1155-1182. Zbl0827.35021MR1116857DOI10.1080/03605309108820793
  13. RAKOTOSON, J.M. - ZIEMER, W.P., Local behavior of solutions of quasilinear elliptic equations with general structure, Trans. A. M. S., 319 (1990), 747-764. Zbl0708.35023MR998128DOI10.2307/2001263
  14. SERRIN, J., Local behavior of solutions of quasilinear equations, Acta Math., 111 (1964), 247-302. Zbl0128.09101MR170096DOI10.1007/BF02391014
  15. SERRIN, J. - ZOU, H., Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189, n. 1 (2002), 79-142. Zbl1059.35040MR1946918DOI10.1007/BF02392645
  16. ZAMBONI, P., Harnack's inequality for quasilinear elliptic equations with coefficients in Morrey spaces, Rend. Sem. Mat. Univ. Padova, 89 (1993), 87-96. Zbl0802.35043MR1229045
  17. ZAMBONI, P., Local boundedness of solutions of quasilinear elliptic equations with coefficients in Morrey spaces, Boll. Un. Mat. It., 8-B (1994), 985-997. Zbl0827.35040MR1315830
  18. ZAMBONI, P., Local behavior of solutions of quasilinear elliptic equations with coefficients in Morrey Spaces, Rendiconti di Matematica, Serie VII, 15 (1995), 251-262. Zbl0832.35046MR1339243
  19. ZAMBONI, P., Unique continuation for non-negative solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc., 64 (2001), 149-156. Zbl0989.47037MR1848087DOI10.1017/S0004972700019766
  20. ZAMBONI, P.The Harnack inequality for quasilinear elliptic equations under minimal assumptions, Manuscripta Math., 102 (2000), 311-323. Zbl0954.35063MR1777522DOI10.1007/s002290050002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.