On the Delta set of a singular arithmetical congruence monoid

Paul Baginski[1]; Scott T. Chapman[2]; George J. Schaeffer[3]

  • [1] University of California at Berkeley Department of Mathematics Berkeley, California 94720
  • [2] Trinity University Department of Mathematics One Trinity Place San Antonio, TX. 78212-7200
  • [3] Carnegie Mellon University Department of Mathematical Sciences Pittsburgh, PA 15213

Journal de Théorie des Nombres de Bordeaux (2008)

  • Volume: 20, Issue: 1, page 45-59
  • ISSN: 1246-7405

Abstract

top
If a and b are positive integers with a b and a 2 a mod b , then the set M a , b = { x : x a mod b or x = 1 } is a multiplicative monoid known as an arithmetical congruence monoid (or ACM). For any monoid M with units M × and any x M M × we say that t is a factorization length of x if and only if there exist irreducible elements y 1 , ... , y t of M and x = y 1 y t . Let ( x ) = { t 1 , ... , t j } be the set of all such lengths (where t i < t i + 1 whenever i < j ). The Delta-set of the element x is defined as the set of gaps in ( x ) : Δ ( x ) = { t i + 1 - t i : 1 i < k } and the Delta-set of the monoid M is given by x M M × Δ ( x ) . We consider the Δ ( M ) when M = M a , b is an ACM with gcd ( a , b ) > 1 . This set is fully characterized when gcd ( a , b ) = p α for p prime and α > 0 . Bounds on Δ ( M a , b ) are given when gcd ( a , b ) has two or more distinct prime factors

How to cite

top

Baginski, Paul, Chapman, Scott T., and Schaeffer, George J.. "On the Delta set of a singular arithmetical congruence monoid." Journal de Théorie des Nombres de Bordeaux 20.1 (2008): 45-59. <http://eudml.org/doc/10832>.

@article{Baginski2008,
abstract = {If $a$ and $b$ are positive integers with $a\le b$ and $a^2\equiv a\;\mathrm\{mod\}b$, then the set\[ M\_\{a,b\}=\lbrace x\in \mathbb\{N\}:\text\{$x\equiv a\;\mathrm\{mod\}b$ or $x=1$\}\rbrace \]is a multiplicative monoid known as an arithmetical congruence monoid (or ACM). For any monoid $M$ with units $M^\times $ and any $x\in M\setminus M^\times $ we say that $t\in \mathbb\{N\}$ is a factorization length of $x$ if and only if there exist irreducible elements $y_1,\ldots ,y_t$ of $M$ and $x=y_1\cdots y_t$. Let $\mathcal\{L\}(x)=\lbrace t_1,\ldots ,t_j\rbrace $ be the set of all such lengths (where $t_i&lt;t_\{i+1\}$ whenever $i&lt;j$). The Delta-set of the element $x$ is defined as the set of gaps in $\mathcal\{L\}(x)$: $\Delta (x)=\lbrace t_\{i+1\}-t_i:1\le i&lt;k\rbrace $ and the Delta-set of the monoid $M$ is given by $\bigcup _\{x\in M\setminus M^\times \}\Delta (x)$. We consider the $\Delta (M)$ when $M=M_\{a,b\}$ is an ACM with $\gcd (a,b)&gt;1$. This set is fully characterized when $\gcd (a,b)=p^\alpha $ for $p$ prime and $\alpha &gt;0$. Bounds on $\Delta (M_\{a,b\})$ are given when $\gcd (a,b)$ has two or more distinct prime factors},
affiliation = {University of California at Berkeley Department of Mathematics Berkeley, California 94720; Trinity University Department of Mathematics One Trinity Place San Antonio, TX. 78212-7200; Carnegie Mellon University Department of Mathematical Sciences Pittsburgh, PA 15213},
author = {Baginski, Paul, Chapman, Scott T., Schaeffer, George J.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {non-unique factorizations; arithmetical congruence monoids; half-factorial monoids; elasticities of factorizations; delta-sets; sets of gaps; factorizations into irreducibles; lengths of factorizations},
language = {eng},
number = {1},
pages = {45-59},
publisher = {Université Bordeaux 1},
title = {On the Delta set of a singular arithmetical congruence monoid},
url = {http://eudml.org/doc/10832},
volume = {20},
year = {2008},
}

TY - JOUR
AU - Baginski, Paul
AU - Chapman, Scott T.
AU - Schaeffer, George J.
TI - On the Delta set of a singular arithmetical congruence monoid
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 1
SP - 45
EP - 59
AB - If $a$ and $b$ are positive integers with $a\le b$ and $a^2\equiv a\;\mathrm{mod}b$, then the set\[ M_{a,b}=\lbrace x\in \mathbb{N}:\text{$x\equiv a\;\mathrm{mod}b$ or $x=1$}\rbrace \]is a multiplicative monoid known as an arithmetical congruence monoid (or ACM). For any monoid $M$ with units $M^\times $ and any $x\in M\setminus M^\times $ we say that $t\in \mathbb{N}$ is a factorization length of $x$ if and only if there exist irreducible elements $y_1,\ldots ,y_t$ of $M$ and $x=y_1\cdots y_t$. Let $\mathcal{L}(x)=\lbrace t_1,\ldots ,t_j\rbrace $ be the set of all such lengths (where $t_i&lt;t_{i+1}$ whenever $i&lt;j$). The Delta-set of the element $x$ is defined as the set of gaps in $\mathcal{L}(x)$: $\Delta (x)=\lbrace t_{i+1}-t_i:1\le i&lt;k\rbrace $ and the Delta-set of the monoid $M$ is given by $\bigcup _{x\in M\setminus M^\times }\Delta (x)$. We consider the $\Delta (M)$ when $M=M_{a,b}$ is an ACM with $\gcd (a,b)&gt;1$. This set is fully characterized when $\gcd (a,b)=p^\alpha $ for $p$ prime and $\alpha &gt;0$. Bounds on $\Delta (M_{a,b})$ are given when $\gcd (a,b)$ has two or more distinct prime factors
LA - eng
KW - non-unique factorizations; arithmetical congruence monoids; half-factorial monoids; elasticities of factorizations; delta-sets; sets of gaps; factorizations into irreducibles; lengths of factorizations
UR - http://eudml.org/doc/10832
ER -

References

top
  1. D.F. Anderson, Elasticity of factorizations in integral domains: a survey. Lecture Notes in Pure and Appl. Math. 189 (1997), 1–29. Zbl0903.13008MR1460767
  2. M. Banister, S. T. Chapman, J. Chaika, W. Meyerson, On a result of James and Niven concerning unique factorization in congruence semigroups. To appear in Elemente der Mathematik. Zbl1136.20044MR2314039
  3. M. Banister, S. T. Chapman, J. Chaika, W. Meyerson, On the arithmetic of arithmetical congruence monoids. Colloq. Math. 108 (2007), 105–118. Zbl1142.20038MR2291620
  4. C. Bowles, S.T. Chapman, N. Kaplan, D. Reiser, On Δ -sets of numerical monoids. J. Pure Appl. Algebra 5 (2006), 1–24. Zbl1115.20052MR2269412
  5. S. T. Chapman, A. Geroldinger, Krull domains and their monoids, their sets of lengths, and associated combinatorial problems. Lecture Notes in Pure and Applied Mathematics 189 (1997), 73–112. Zbl0897.13001
  6. A. Geroldinger, Uber nicht-eindeutige Zerlegungen in irreduzible Elemente. Math. Z. 197 (1988), 505–529. Zbl0618.12002MR932683
  7. A. Geroldinger, F. Halter-Koch, Non-unique factorizations. Algebraic, Combinatorial and Analytic Theory, Chapman & Hall/CRC, 2006. Zbl1113.11002MR2194494
  8. A. Geroldinger, F. Halter-Koch, Congruence monoids. Acta Arith. 112 (2004), 263–296. Zbl1057.13003MR2046184
  9. F. Halter-Koch, Arithmetical semigroups defined by congruences. Semigroup Forum 42 (1991), 59–62. Zbl0734.20027MR1075194
  10. F. Halter-Koch, Elasticity of factorizations in atomic monoids and integral domains. J. Théor. Nombres Bordeaux 7 (1995), 367–385. Zbl0844.11068MR1378586
  11. F. Halter-Koch, C-monoids and congruence monoids in Krull domains. Lect. Notes Pure Appl. Math. 241 (2005), 71–98. Zbl1093.13016MR2140687
  12. R. D. James, I. Niven, Unique factorization in multiplicative systems. Proc. Amer. Math. Soc. 5 (1954), 834–838. Zbl0055.27001MR64797

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.