Elasticity of factorizations in atomic monoids and integral domains
Journal de théorie des nombres de Bordeaux (1995)
- Volume: 7, Issue: 2, page 367-385
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topHalter-Koch, Franz. "Elasticity of factorizations in atomic monoids and integral domains." Journal de théorie des nombres de Bordeaux 7.2 (1995): 367-385. <http://eudml.org/doc/247668>.
@article{Halter1995,
abstract = {For an atomic domain $R$, its elasticity $\rho (R)$ is defined by : $\rho (R) = \sup \lbrace m/n \left| u_1 \cdots u_m = v_1 \cdots v_n\right.$ for irreducible $u_j, v_i \in R \rbrace $. We study the elasticity of one-dimensional noetherian domains by means of the more subtle invariants $\mu _m (R)$ defined by : $\mu _m(R) = \sup \lbrace n\left|u_1 \cdots u_m = u_1 \cdots v_n\right.$ for irreducible $u_j, v_i \in R \rbrace $. As a main result we characterize all orders in algebraic number fields having finite elasticity. On the way, we obtain a series of results concerning the invariants $\mu _m$ and $\rho $ for monoids and integral domains which are of independent interest.},
author = {Halter-Koch, Franz},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {length of factorization; orders with finite elasticity; elasticity; atomic integral domain; atomic monoids; Krull domain; divisor class group},
language = {eng},
number = {2},
pages = {367-385},
publisher = {Université Bordeaux I},
title = {Elasticity of factorizations in atomic monoids and integral domains},
url = {http://eudml.org/doc/247668},
volume = {7},
year = {1995},
}
TY - JOUR
AU - Halter-Koch, Franz
TI - Elasticity of factorizations in atomic monoids and integral domains
JO - Journal de théorie des nombres de Bordeaux
PY - 1995
PB - Université Bordeaux I
VL - 7
IS - 2
SP - 367
EP - 385
AB - For an atomic domain $R$, its elasticity $\rho (R)$ is defined by : $\rho (R) = \sup \lbrace m/n \left| u_1 \cdots u_m = v_1 \cdots v_n\right.$ for irreducible $u_j, v_i \in R \rbrace $. We study the elasticity of one-dimensional noetherian domains by means of the more subtle invariants $\mu _m (R)$ defined by : $\mu _m(R) = \sup \lbrace n\left|u_1 \cdots u_m = u_1 \cdots v_n\right.$ for irreducible $u_j, v_i \in R \rbrace $. As a main result we characterize all orders in algebraic number fields having finite elasticity. On the way, we obtain a series of results concerning the invariants $\mu _m$ and $\rho $ for monoids and integral domains which are of independent interest.
LA - eng
KW - length of factorization; orders with finite elasticity; elasticity; atomic integral domain; atomic monoids; Krull domain; divisor class group
UR - http://eudml.org/doc/247668
ER -
References
top- [1] D.D. Anderson and D.F. Anderson, Elasticity of factorizations in integral domains, J. Pure Appl. Algebra80 (1992), 217-235. Zbl0773.13003MR1170712
- [2] D.D. Anderson and D.F. Anderson, Elasticity of factorizations in irategral domains II, Houston J. Math.20 (1994), 1-15. Zbl0838.13002MR1272557
- [3] D.D. Anderson, D.F. Anderson, S.T. Chapman and W.W. Smith, Rational Elasticity of Factorizations in Krull Domains, Proc. AMS117 (1993), 37 -43. Zbl0777.13003MR1106176
- [4] D.D. Anderson and J.L. Mott, Cohen-Kaplansky Domains: Integral Domains with a Finite Number of Irreducible Elements, J. Algebra148 (1992), 17-41. Zbl0773.13005MR1161563
- [5] D D. Anderson, J.L.Mott and M. Zafrullah, Finite character representations for integral domains, Boll. U. M. I.6-B (1992), 613- 630. Zbl0773.13004MR1191956
- [6] A. Fröhlich, Local fields, Algebraic Number Theory (J. W. S. Cassels and A. Fröhlich, eds.), Academic Press1967. MR236145
- [7] A. Geroldinger, On the arithmetic of certain not integrally closed noetherian domains, Comm. Algebra19 (1991), 685-698. Zbl0723.20038MR1100372
- [8] A. Geroldinger, T-block monoids and their arithmetical applications to noetherian domains, Comm. Algebra22 (1994), 1603-1615. Zbl0809.13013MR1264730
- [9] A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math. Z.197 (1988), 505-529. Zbl0618.12002MR932683
- [10] A. Geroldinger and F. Halter-Koch, Realization Theorems for Semigroups with Divisor Theory, Semigroup Forum44 (1992), 229-237. Zbl0751.20045MR1141841
- [11] A. Geroldinger and F. Halter-Koch, Arithmetical theory of monoid hommnorphisms, Semigroup Forum48 (1994), 333-362. Zbl0805.20057MR1262998
- [12] A. Geroldinger and G. Lettl, Factorization problems in semigroups, Semigroup Forum40 (1990), 23—38. Zbl0693.20063MR1014223
- [13] A. Geroldinger and R. Schneider, On Davenport's constant, J. Comb. Theory, Series A61 (1992), 147-152. Zbl0759.20008MR1178393
- [14] F. Halter-Koch, Ein Approximationssatz für Halbgruppen mit Divisorentheorie, Result. Math19 (1991), 74-82. Zbl0742.20060MR1091957
- [15] F. Halter-Koch, Divisor theories with primary elements and weakly Krull domains, Boll. U. M. I.. Zbl0849.20041
- [16] F. Halter-Koch, Zur Zahlen- und Idealtheorie eindimensionaler noetherscher Integritätsbereiche, J. Algebra136 (1991), 103-108. Zbl0743.13001MR1085124
- [17] N. Jacobson, Basic Algebra I, Freeman and Co,1974. Zbl0284.16001MR356989
- [18] J. Neukirch, Algebraische Zahlentheorie, Springer, 1992. Zbl0747.11001
- [19] J.L. Steffan, Longeurs des décompositions en produits d'éléments irréducibles dans un anneau de Dedekind, J. Algebra102 (1986), 229-236. Zbl0593.13015MR853241
- [20] R.J. Valenza, Elasticity of factorizations in number fields, J. Number Theory39 (1990), 212-218. Zbl0721.11043MR1072466
Citations in EuDML Documents
top- Paul Baginski, Scott T. Chapman, George J. Schaeffer, On the Delta set of a singular arithmetical congruence monoid
- SooAh Chang, Scott T. Chapman, William W. Smith, Elasticity in certain block monoids via the Euclidean table
- Alfred Geroldinger, Chains of factorizations in weakly Krull domains
- Alfred Geroldinger, A structure theorem for sets of lengths
- Wolfgang A. Schmid, Differences in sets of lengths of Krull monoids with finite class group
- Alfred Geroldinger, On the structure and arithmetic of finitely primary monoids
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.