Elasticity of factorizations in atomic monoids and integral domains

Franz Halter-Koch

Journal de théorie des nombres de Bordeaux (1995)

  • Volume: 7, Issue: 2, page 367-385
  • ISSN: 1246-7405

Abstract

top
For an atomic domain R , its elasticity ρ ( R ) is defined by : ρ ( R ) = sup { m / n u 1 u m = v 1 v n for irreducible u j , v i R } . We study the elasticity of one-dimensional noetherian domains by means of the more subtle invariants μ m ( R ) defined by : μ m ( R ) = sup { n u 1 u m = u 1 v n for irreducible u j , v i R } . As a main result we characterize all orders in algebraic number fields having finite elasticity. On the way, we obtain a series of results concerning the invariants μ m and ρ for monoids and integral domains which are of independent interest.

How to cite

top

Halter-Koch, Franz. "Elasticity of factorizations in atomic monoids and integral domains." Journal de théorie des nombres de Bordeaux 7.2 (1995): 367-385. <http://eudml.org/doc/247668>.

@article{Halter1995,
abstract = {For an atomic domain $R$, its elasticity $\rho (R)$ is defined by : $\rho (R) = \sup \lbrace m/n \left| u_1 \cdots u_m = v_1 \cdots v_n\right.$ for irreducible $u_j, v_i \in R \rbrace $. We study the elasticity of one-dimensional noetherian domains by means of the more subtle invariants $\mu _m (R)$ defined by : $\mu _m(R) = \sup \lbrace n\left|u_1 \cdots u_m = u_1 \cdots v_n\right.$ for irreducible $u_j, v_i \in R \rbrace $. As a main result we characterize all orders in algebraic number fields having finite elasticity. On the way, we obtain a series of results concerning the invariants $\mu _m$ and $\rho $ for monoids and integral domains which are of independent interest.},
author = {Halter-Koch, Franz},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {length of factorization; orders with finite elasticity; elasticity; atomic integral domain; atomic monoids; Krull domain; divisor class group},
language = {eng},
number = {2},
pages = {367-385},
publisher = {Université Bordeaux I},
title = {Elasticity of factorizations in atomic monoids and integral domains},
url = {http://eudml.org/doc/247668},
volume = {7},
year = {1995},
}

TY - JOUR
AU - Halter-Koch, Franz
TI - Elasticity of factorizations in atomic monoids and integral domains
JO - Journal de théorie des nombres de Bordeaux
PY - 1995
PB - Université Bordeaux I
VL - 7
IS - 2
SP - 367
EP - 385
AB - For an atomic domain $R$, its elasticity $\rho (R)$ is defined by : $\rho (R) = \sup \lbrace m/n \left| u_1 \cdots u_m = v_1 \cdots v_n\right.$ for irreducible $u_j, v_i \in R \rbrace $. We study the elasticity of one-dimensional noetherian domains by means of the more subtle invariants $\mu _m (R)$ defined by : $\mu _m(R) = \sup \lbrace n\left|u_1 \cdots u_m = u_1 \cdots v_n\right.$ for irreducible $u_j, v_i \in R \rbrace $. As a main result we characterize all orders in algebraic number fields having finite elasticity. On the way, we obtain a series of results concerning the invariants $\mu _m$ and $\rho $ for monoids and integral domains which are of independent interest.
LA - eng
KW - length of factorization; orders with finite elasticity; elasticity; atomic integral domain; atomic monoids; Krull domain; divisor class group
UR - http://eudml.org/doc/247668
ER -

References

top
  1. [1] D.D. Anderson and D.F. Anderson, Elasticity of factorizations in integral domains, J. Pure Appl. Algebra80 (1992), 217-235. Zbl0773.13003MR1170712
  2. [2] D.D. Anderson and D.F. Anderson, Elasticity of factorizations in irategral domains II, Houston J. Math.20 (1994), 1-15. Zbl0838.13002MR1272557
  3. [3] D.D. Anderson, D.F. Anderson, S.T. Chapman and W.W. Smith, Rational Elasticity of Factorizations in Krull Domains, Proc. AMS117 (1993), 37 -43. Zbl0777.13003MR1106176
  4. [4] D.D. Anderson and J.L. Mott, Cohen-Kaplansky Domains: Integral Domains with a Finite Number of Irreducible Elements, J. Algebra148 (1992), 17-41. Zbl0773.13005MR1161563
  5. [5] D D. Anderson, J.L.Mott and M. Zafrullah, Finite character representations for integral domains, Boll. U. M. I.6-B (1992), 613- 630. Zbl0773.13004MR1191956
  6. [6] A. Fröhlich, Local fields, Algebraic Number Theory (J. W. S. Cassels and A. Fröhlich, eds.), Academic Press1967. MR236145
  7. [7] A. Geroldinger, On the arithmetic of certain not integrally closed noetherian domains, Comm. Algebra19 (1991), 685-698. Zbl0723.20038MR1100372
  8. [8] A. Geroldinger, T-block monoids and their arithmetical applications to noetherian domains, Comm. Algebra22 (1994), 1603-1615. Zbl0809.13013MR1264730
  9. [9] A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math. Z.197 (1988), 505-529. Zbl0618.12002MR932683
  10. [10] A. Geroldinger and F. Halter-Koch, Realization Theorems for Semigroups with Divisor Theory, Semigroup Forum44 (1992), 229-237. Zbl0751.20045MR1141841
  11. [11] A. Geroldinger and F. Halter-Koch, Arithmetical theory of monoid hommnorphisms, Semigroup Forum48 (1994), 333-362. Zbl0805.20057MR1262998
  12. [12] A. Geroldinger and G. Lettl, Factorization problems in semigroups, Semigroup Forum40 (1990), 23—38. Zbl0693.20063MR1014223
  13. [13] A. Geroldinger and R. Schneider, On Davenport's constant, J. Comb. Theory, Series A61 (1992), 147-152. Zbl0759.20008MR1178393
  14. [14] F. Halter-Koch, Ein Approximationssatz für Halbgruppen mit Divisorentheorie, Result. Math19 (1991), 74-82. Zbl0742.20060MR1091957
  15. [15] F. Halter-Koch, Divisor theories with primary elements and weakly Krull domains, Boll. U. M. I.. Zbl0849.20041
  16. [16] F. Halter-Koch, Zur Zahlen- und Idealtheorie eindimensionaler noetherscher Integritätsbereiche, J. Algebra136 (1991), 103-108. Zbl0743.13001MR1085124
  17. [17] N. Jacobson, Basic Algebra I, Freeman and Co,1974. Zbl0284.16001MR356989
  18. [18] J. Neukirch, Algebraische Zahlentheorie, Springer, 1992. Zbl0747.11001
  19. [19] J.L. Steffan, Longeurs des décompositions en produits d'éléments irréducibles dans un anneau de Dedekind, J. Algebra102 (1986), 229-236. Zbl0593.13015MR853241
  20. [20] R.J. Valenza, Elasticity of factorizations in number fields, J. Number Theory39 (1990), 212-218. Zbl0721.11043MR1072466

Citations in EuDML Documents

top
  1. SooAh Chang, Scott T. Chapman, William W. Smith, Elasticity in certain block monoids via the Euclidean table
  2. Paul Baginski, Scott T. Chapman, George J. Schaeffer, On the Delta set of a singular arithmetical congruence monoid
  3. Alfred Geroldinger, Chains of factorizations in weakly Krull domains
  4. Alfred Geroldinger, A structure theorem for sets of lengths
  5. Alfred Geroldinger, On the structure and arithmetic of finitely primary monoids
  6. Wolfgang A. Schmid, Differences in sets of lengths of Krull monoids with finite class group

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.