The S -transform and its dual with applications to Prüfer extensions

Christopher P. L. Rhodes

Rendiconti del Seminario Matematico della Università di Padova (1996)

  • Volume: 95, page 201-216
  • ISSN: 0041-8994

How to cite

top

Rhodes, Christopher P. L.. "The $S$-transform and its dual with applications to Prüfer extensions." Rendiconti del Seminario Matematico della Università di Padova 95 (1996): 201-216. <http://eudml.org/doc/108392>.

@article{Rhodes1996,
author = {Rhodes, Christopher P. L.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {localisation; maximal -ideal; standard ideal transform; Prüfer ring},
language = {eng},
pages = {201-216},
publisher = {Seminario Matematico of the University of Padua},
title = {The $S$-transform and its dual with applications to Prüfer extensions},
url = {http://eudml.org/doc/108392},
volume = {95},
year = {1996},
}

TY - JOUR
AU - Rhodes, Christopher P. L.
TI - The $S$-transform and its dual with applications to Prüfer extensions
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 95
SP - 201
EP - 216
LA - eng
KW - localisation; maximal -ideal; standard ideal transform; Prüfer ring
UR - http://eudml.org/doc/108392
ER -

References

top
  1. [1] D.F. Anderson - A. Bouvier, Ideal transforms, and overrings of a quasilocal integral domain, Ann. Univ. Ferrara, 32 (1986), pp. 15-38. Zbl0655.13002MR901583
  2. [2] J.T. Arnold - J.W. Brewer, On flat overrings, ideal transforms and generalized transforms of a commutative ring, J. Algebra, 18 (1971), pp. 254-263. Zbl0218.13019MR276215
  3. [3] J.W. Brewer, The ideal transform and overrings of an integral domain, Math. Z., 107 (1968), pp. 301-306. Zbl0167.03601MR236158
  4. [4] R.W. Gilmer, Overrings of Prüfer domains, J. Algebra, 4 (1966), pp. 331-340. Zbl0146.26205MR202749
  5. [5] R.W. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York and Basel (1972). Zbl0248.13001MR427289
  6. [6] R.W. Gilmer - W.J. Heinzer, Overrings of Prüfer domains. II, J. Algebra, 7 (1967), pp. 281-302. Zbl0156.04304MR217055
  7. [7] M. Griffin, Prüfer rings with zero divisors, J. Reine Angew. Math., 239-240 (1969), pp. 55-67. Zbl0185.09801MR255527
  8. [8] M. Griffin, Valuations and Prüfer rings, Can. J. Math., 26 (1974), pp. 412-429. Zbl0259.13008MR345957
  9. [9] J.H. Hays, The S-transform and the ideal transform, J. Algebra, 57 (1979), pp. 223-229. Zbl0427.13007MR533111
  10. [10] W.J. Heinzer - J. Ohm - R.L. Pendleton, On integral domains of the form ∩ Dp, P minimal, J. Reine Angew. Math., 241 (1970), pp. 147-159. Zbl0191.32202
  11. [11] J.A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York and Basel (1988). Zbl0637.13001MR938741
  12. [12] J.A. Huckaba - I.J. Papick, When the dual of an ideal is a ring, Manuscripta Math., 37 (1982), pp. 67-85. Zbl0484.13001MR649566
  13. [13] I. Kaplansky, Commutative Rings, Polygonal Publishing House, Washington, New Jersey (1994). 
  14. [14] R. Matsuda, Generalizations of multiplicative ideal theory to commutative rings with zerodivisors, Bull. Fac. Sci. Ibaraki U., Ser. A Math., 17 (1985), pp. 49-101. Zbl0573.13003MR796348
  15. [15] M. Nagata, A treatise on the 14-th problem of Hilbert, Mem. Coll. Sci. Univ. Kyoto, 30 (1956), pp. 57-70. Zbl0089.02501MR88034
  16. [16] M. Nagata, Some sufficient conditions for the fourteenth problem of Hilbert, Actas Del Coloquio Internac. Sobre Geometria Algebraica (1965), pp. 107-121. Zbl0142.28701MR199215
  17. [17] C.P.L. Rhodes, On valuation subalgebras and their centres, Glasgow Math. J., 31 (1989), pp. 115-126. Zbl0668.13015MR981905
  18. [18] C.P.L. Rhodes, Relatively Prüfer pairs of commutative rings, Comm. Algebra, 19 (1991), pp. 3423-3445. Zbl0747.13013MR1135634
  19. [19] P. Schenzel, When is a flact algebra of finite type ?, Proc. Amer. Math. Soc., 109 (1990), pp. 287-290. Zbl0711.13004MR1000168

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.