Variations on a theme of Runge: effective determination of integral points on certain varieties

Aaron Levin[1]

  • [1] Centro di Ricerca Matematica Ennio De Giorgi Collegio Puteano Scuola Normale Superiore Piazza dei Cavalieri, 3 I-56100 Pisa, Italy

Journal de Théorie des Nombres de Bordeaux (2008)

  • Volume: 20, Issue: 2, page 385-417
  • ISSN: 1246-7405

Abstract

top
We consider some variations on the classical method of Runge for effectively determining integral points on certain curves. We first prove a version of Runge’s theorem valid for higher-dimensional varieties, generalizing a uniform version of Runge’s theorem due to Bombieri. We then take up the study of how Runge’s method may be expanded by taking advantage of certain coverings. We prove both a result for arbitrary curves and a more explicit result for superelliptic curves. As an application of our method, we completely solve certain equations involving squares in products of terms in an arithmetic progression.

How to cite

top

Levin, Aaron. "Variations on a theme of Runge: effective determination of integral points on certain varieties." Journal de Théorie des Nombres de Bordeaux 20.2 (2008): 385-417. <http://eudml.org/doc/10843>.

@article{Levin2008,
abstract = {We consider some variations on the classical method of Runge for effectively determining integral points on certain curves. We first prove a version of Runge’s theorem valid for higher-dimensional varieties, generalizing a uniform version of Runge’s theorem due to Bombieri. We then take up the study of how Runge’s method may be expanded by taking advantage of certain coverings. We prove both a result for arbitrary curves and a more explicit result for superelliptic curves. As an application of our method, we completely solve certain equations involving squares in products of terms in an arithmetic progression.},
affiliation = {Centro di Ricerca Matematica Ennio De Giorgi Collegio Puteano Scuola Normale Superiore Piazza dei Cavalieri, 3 I-56100 Pisa, Italy},
author = {Levin, Aaron},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Diophantine equations; integral points},
language = {eng},
number = {2},
pages = {385-417},
publisher = {Université Bordeaux 1},
title = {Variations on a theme of Runge: effective determination of integral points on certain varieties},
url = {http://eudml.org/doc/10843},
volume = {20},
year = {2008},
}

TY - JOUR
AU - Levin, Aaron
TI - Variations on a theme of Runge: effective determination of integral points on certain varieties
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 2
SP - 385
EP - 417
AB - We consider some variations on the classical method of Runge for effectively determining integral points on certain curves. We first prove a version of Runge’s theorem valid for higher-dimensional varieties, generalizing a uniform version of Runge’s theorem due to Bombieri. We then take up the study of how Runge’s method may be expanded by taking advantage of certain coverings. We prove both a result for arbitrary curves and a more explicit result for superelliptic curves. As an application of our method, we completely solve certain equations involving squares in products of terms in an arithmetic progression.
LA - eng
KW - Diophantine equations; integral points
UR - http://eudml.org/doc/10843
ER -

References

top
  1. A. Baker, Transcendental number theory, second ed. Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Zbl0715.11032MR1074572
  2. M. A. Bennett, N. Bruin, K. Győry, L. Hajdu, Powers from products of consecutive terms in arithmetic progression. Proc. London Math. Soc. (3) 92 (2006), no. 2, 273–306. Zbl1178.11033MR2205718
  3. E. Bombieri, On Weil’s “théorème de décomposition”. Amer. J. Math. 105 (1983), no. 2, 295–308. Zbl0516.12009
  4. E. Bombieri, W. Gubler, Heights in Diophantine geometry. New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. Zbl1115.11034MR2216774
  5. R. F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765–770. Zbl0588.14015MR808103
  6. P. Erdős, J. L. Selfridge, The product of consecutive integers is never a power. Illinois J. Math. 19 (1975), 292–301. Zbl0295.10017MR376517
  7. D. L. Hilliker, E. G. Straus, Determination of bounds for the solutions to those binary Diophantine equations that satisfy the hypotheses of Runge’s theorem. Trans. Amer. Math. Soc. 280 (1983), no. 2, 637–657. Zbl0528.10011
  8. M. Hindry, J. H. Silverman, Diophantine geometry. Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. Zbl0948.11023MR1745599
  9. N. Hirata-Kohno, S. Laishram, T. N. Shorey, R. Tijdeman, An extension of a theorem of Euler. Acta Arith. 129 (2007), no. 1, 71–102. Zbl1137.11022MR2326488
  10. S. Laishram, T. N. Shorey, Squares in products in arithmetic progression with at most two terms omitted and common difference a prime power. Acta Arith. (to appear). Zbl1158.11018
  11. S. Laishram, T. N. Shorey, S. Tengely, Squares in products in arithmetic progression with at most one term omitted and common difference a prime power. (to appear). Zbl1158.11018MR2453529
  12. A. Levin, Ideal class groups and torsion in Picard groups of varieties. (submitted). 
  13. A. Levin, Ideal class groups, Hilbert’s irreducibility theorem, and integral points of bounded degree on curves. J. Théor. Nombres Bordeaux 19 (2007), no. 2, 485–499. Zbl1216.11101
  14. D. W. Masser, G. Wüstholz, Fields of large transcendence degree generated by values of elliptic functions. Invent. Math. 72 (1983), no. 3, 407–464. Zbl0516.10027MR704399
  15. A. Mukhopadhyay, T. N. Shorey, Almost squares in arithmetic progression. II Acta Arith. 110 (2003), no. 1, 1–14. Zbl1030.11010MR2007540
  16. A. Mukhopadhyay, T. N. Shorey, Almost squares in arithmetic progression. III. Indag. Math. (N.S.) 15 (2004), no. 4, 523–533. Zbl1215.11032MR2114935
  17. A. Mukhopadhyay, T. N. Shorey, Square free part of products of consecutive integers. Publ. Math. Debrecen 64 (2004), no. 1-2, 79–99. Zbl1049.11037MR2035890
  18. R. Obláth, Über das Produkt fünf aufeinander folgender Zahlen in einer arithmetischen Reihe. Publ. Math. Debrecen 1 (1950), 222–226. Zbl0038.17901MR39745
  19. C. Runge, Über ganzzahlige Lösungen von Gleichungen zwischen zwei Veränderlichen. J. Reine Angew. Math. 100 (1887), 425–435. Zbl19.0076.03
  20. N. Saradha, T. N. Shorey, Almost squares and factorisations in consecutive integers. Compositio Math. 138 (2003), no. 1, 113–124. Zbl1038.11020MR2002956
  21. N. Saradha, T. N. Shorey, Almost squares in arithmetic progression. Compositio Math. 138 (2003), no. 1, 73–111. Zbl1036.11007MR2002955
  22. A. Schinzel, W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers. Acta Arith. 4 (1958), 185–208; erratum 5 (1958), 259. Zbl0082.25802MR106202
  23. T. N. Shorey, Exponential Diophantine equations involving products of consecutive integers and related equations. Number theory, Trends Math., Birkhäuser, Basel, 2000, pp. 463–495. Zbl0958.11026MR1764814
  24. T. N. Shorey, Powers in arithmetic progressions. III. The Riemann zeta function and related themes: papers in honour of Professor K. Ramachandra, Ramanujan Math. Soc. Lect. Notes Ser., vol. 2, Ramanujan Math. Soc., Mysore, 2006, pp. 131–140. Zbl1127.11027MR2335192
  25. T. N. Shorey, R. Tijdeman, Some methods of Erdős applied to finite arithmetic progressions. The mathematics of Paul Erdős, I, Algorithms Combin., vol. 13, Springer, Berlin, 1997, pp. 251–267. Zbl0874.11035MR1425190
  26. V. G. Sprindžuk, Reducibility of polynomials and rational points on algebraic curves. Dokl. Akad. Nauk SSSR 250 (1980), no. 6, 1327–1330. Zbl0447.12010MR564338
  27. W. Stein, Sage: Open Source Mathematical Software (Version 2.10.2). The Sage Group, 2008, http://www.sagemath.org. 
  28. S. Tengely, Note on a paper “An extension of a theorem of Euler” by Hirata-Kohno et al. arXiv:0707.0596v1 [math.NT]. Zbl1219.11057
  29. The PARI Group, Bordeaux, PARI/GP, version 2.3.3, 2005, available from http://pari.math.u-bordeaux.fr/. 
  30. P. G. Walsh, A quantitative version of Runge’s theorem on Diophantine equations. Acta Arith. 62 (1992), no. 2, 157–172. Zbl0769.11017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.