Variations on a theme of Runge: effective determination of integral points on certain varieties
Aaron Levin[1]
- [1] Centro di Ricerca Matematica Ennio De Giorgi Collegio Puteano Scuola Normale Superiore Piazza dei Cavalieri, 3 I-56100 Pisa, Italy
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 2, page 385-417
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLevin, Aaron. "Variations on a theme of Runge: effective determination of integral points on certain varieties." Journal de Théorie des Nombres de Bordeaux 20.2 (2008): 385-417. <http://eudml.org/doc/10843>.
@article{Levin2008,
abstract = {We consider some variations on the classical method of Runge for effectively determining integral points on certain curves. We first prove a version of Runge’s theorem valid for higher-dimensional varieties, generalizing a uniform version of Runge’s theorem due to Bombieri. We then take up the study of how Runge’s method may be expanded by taking advantage of certain coverings. We prove both a result for arbitrary curves and a more explicit result for superelliptic curves. As an application of our method, we completely solve certain equations involving squares in products of terms in an arithmetic progression.},
affiliation = {Centro di Ricerca Matematica Ennio De Giorgi Collegio Puteano Scuola Normale Superiore Piazza dei Cavalieri, 3 I-56100 Pisa, Italy},
author = {Levin, Aaron},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Diophantine equations; integral points},
language = {eng},
number = {2},
pages = {385-417},
publisher = {Université Bordeaux 1},
title = {Variations on a theme of Runge: effective determination of integral points on certain varieties},
url = {http://eudml.org/doc/10843},
volume = {20},
year = {2008},
}
TY - JOUR
AU - Levin, Aaron
TI - Variations on a theme of Runge: effective determination of integral points on certain varieties
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 2
SP - 385
EP - 417
AB - We consider some variations on the classical method of Runge for effectively determining integral points on certain curves. We first prove a version of Runge’s theorem valid for higher-dimensional varieties, generalizing a uniform version of Runge’s theorem due to Bombieri. We then take up the study of how Runge’s method may be expanded by taking advantage of certain coverings. We prove both a result for arbitrary curves and a more explicit result for superelliptic curves. As an application of our method, we completely solve certain equations involving squares in products of terms in an arithmetic progression.
LA - eng
KW - Diophantine equations; integral points
UR - http://eudml.org/doc/10843
ER -
References
top- A. Baker, Transcendental number theory, second ed. Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Zbl0715.11032MR1074572
- M. A. Bennett, N. Bruin, K. Győry, L. Hajdu, Powers from products of consecutive terms in arithmetic progression. Proc. London Math. Soc. (3) 92 (2006), no. 2, 273–306. Zbl1178.11033MR2205718
- E. Bombieri, On Weil’s “théorème de décomposition”. Amer. J. Math. 105 (1983), no. 2, 295–308. Zbl0516.12009
- E. Bombieri, W. Gubler, Heights in Diophantine geometry. New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. Zbl1115.11034MR2216774
- R. F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765–770. Zbl0588.14015MR808103
- P. Erdős, J. L. Selfridge, The product of consecutive integers is never a power. Illinois J. Math. 19 (1975), 292–301. Zbl0295.10017MR376517
- D. L. Hilliker, E. G. Straus, Determination of bounds for the solutions to those binary Diophantine equations that satisfy the hypotheses of Runge’s theorem. Trans. Amer. Math. Soc. 280 (1983), no. 2, 637–657. Zbl0528.10011
- M. Hindry, J. H. Silverman, Diophantine geometry. Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. Zbl0948.11023MR1745599
- N. Hirata-Kohno, S. Laishram, T. N. Shorey, R. Tijdeman, An extension of a theorem of Euler. Acta Arith. 129 (2007), no. 1, 71–102. Zbl1137.11022MR2326488
- S. Laishram, T. N. Shorey, Squares in products in arithmetic progression with at most two terms omitted and common difference a prime power. Acta Arith. (to appear). Zbl1158.11018
- S. Laishram, T. N. Shorey, S. Tengely, Squares in products in arithmetic progression with at most one term omitted and common difference a prime power. (to appear). Zbl1158.11018MR2453529
- A. Levin, Ideal class groups and torsion in Picard groups of varieties. (submitted).
- A. Levin, Ideal class groups, Hilbert’s irreducibility theorem, and integral points of bounded degree on curves. J. Théor. Nombres Bordeaux 19 (2007), no. 2, 485–499. Zbl1216.11101
- D. W. Masser, G. Wüstholz, Fields of large transcendence degree generated by values of elliptic functions. Invent. Math. 72 (1983), no. 3, 407–464. Zbl0516.10027MR704399
- A. Mukhopadhyay, T. N. Shorey, Almost squares in arithmetic progression. II Acta Arith. 110 (2003), no. 1, 1–14. Zbl1030.11010MR2007540
- A. Mukhopadhyay, T. N. Shorey, Almost squares in arithmetic progression. III. Indag. Math. (N.S.) 15 (2004), no. 4, 523–533. Zbl1215.11032MR2114935
- A. Mukhopadhyay, T. N. Shorey, Square free part of products of consecutive integers. Publ. Math. Debrecen 64 (2004), no. 1-2, 79–99. Zbl1049.11037MR2035890
- R. Obláth, Über das Produkt fünf aufeinander folgender Zahlen in einer arithmetischen Reihe. Publ. Math. Debrecen 1 (1950), 222–226. Zbl0038.17901MR39745
- C. Runge, Über ganzzahlige Lösungen von Gleichungen zwischen zwei Veränderlichen. J. Reine Angew. Math. 100 (1887), 425–435. Zbl19.0076.03
- N. Saradha, T. N. Shorey, Almost squares and factorisations in consecutive integers. Compositio Math. 138 (2003), no. 1, 113–124. Zbl1038.11020MR2002956
- N. Saradha, T. N. Shorey, Almost squares in arithmetic progression. Compositio Math. 138 (2003), no. 1, 73–111. Zbl1036.11007MR2002955
- A. Schinzel, W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers. Acta Arith. 4 (1958), 185–208; erratum 5 (1958), 259. Zbl0082.25802MR106202
- T. N. Shorey, Exponential Diophantine equations involving products of consecutive integers and related equations. Number theory, Trends Math., Birkhäuser, Basel, 2000, pp. 463–495. Zbl0958.11026MR1764814
- T. N. Shorey, Powers in arithmetic progressions. III. The Riemann zeta function and related themes: papers in honour of Professor K. Ramachandra, Ramanujan Math. Soc. Lect. Notes Ser., vol. 2, Ramanujan Math. Soc., Mysore, 2006, pp. 131–140. Zbl1127.11027MR2335192
- T. N. Shorey, R. Tijdeman, Some methods of Erdős applied to finite arithmetic progressions. The mathematics of Paul Erdős, I, Algorithms Combin., vol. 13, Springer, Berlin, 1997, pp. 251–267. Zbl0874.11035MR1425190
- V. G. Sprindžuk, Reducibility of polynomials and rational points on algebraic curves. Dokl. Akad. Nauk SSSR 250 (1980), no. 6, 1327–1330. Zbl0447.12010MR564338
- W. Stein, Sage: Open Source Mathematical Software (Version 2.10.2). The Sage Group, 2008, http://www.sagemath.org.
- S. Tengely, Note on a paper “An extension of a theorem of Euler” by Hirata-Kohno et al. arXiv:0707.0596v1 [math.NT]. Zbl1219.11057
- The PARI Group, Bordeaux, PARI/GP, version 2.3.3, 2005, available from http://pari.math.u-bordeaux.fr/.
- P. G. Walsh, A quantitative version of Runge’s theorem on Diophantine equations. Acta Arith. 62 (1992), no. 2, 157–172. Zbl0769.11017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.