Ideal class groups, Hilbert’s irreducibility theorem, and integral points of bounded degree on curves

Aaron Levin[1]

  • [1] Centro di Ricerca Matematica Ennio De Giorgi Collegio Puteano Scuola Normale Superiore Piazza dei Cavalieri, 3 I-56100 Pisa, Italy

Journal de Théorie des Nombres de Bordeaux (2007)

  • Volume: 19, Issue: 2, page 485-499
  • ISSN: 1246-7405

Abstract

top
We study the problem of constructing and enumerating, for any integers m , n > 1 , number fields of degree n whose ideal class groups have “large" m -rank. Our technique relies fundamentally on Hilbert’s irreducibility theorem and results on integral points of bounded degree on curves.

How to cite

top

Levin, Aaron. "Ideal class groups, Hilbert’s irreducibility theorem, and integral points of bounded degree on curves." Journal de Théorie des Nombres de Bordeaux 19.2 (2007): 485-499. <http://eudml.org/doc/249974>.

@article{Levin2007,
abstract = {We study the problem of constructing and enumerating, for any integers $m,n&gt;1$, number fields of degree $n$ whose ideal class groups have “large" $m$-rank. Our technique relies fundamentally on Hilbert’s irreducibility theorem and results on integral points of bounded degree on curves.},
affiliation = {Centro di Ricerca Matematica Ennio De Giorgi Collegio Puteano Scuola Normale Superiore Piazza dei Cavalieri, 3 I-56100 Pisa, Italy},
author = {Levin, Aaron},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {2},
pages = {485-499},
publisher = {Université Bordeaux 1},
title = {Ideal class groups, Hilbert’s irreducibility theorem, and integral points of bounded degree on curves},
url = {http://eudml.org/doc/249974},
volume = {19},
year = {2007},
}

TY - JOUR
AU - Levin, Aaron
TI - Ideal class groups, Hilbert’s irreducibility theorem, and integral points of bounded degree on curves
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 2
SP - 485
EP - 499
AB - We study the problem of constructing and enumerating, for any integers $m,n&gt;1$, number fields of degree $n$ whose ideal class groups have “large" $m$-rank. Our technique relies fundamentally on Hilbert’s irreducibility theorem and results on integral points of bounded degree on curves.
LA - eng
UR - http://eudml.org/doc/249974
ER -

References

top
  1. N. C. Ankeny and S. Chowla, On the divisibility of the class number of quadratic fields. Pacific J. Math. 5 (1955), no. 3, 321–324. Zbl0065.02402MR85301
  2. T. Azuhata and H. Ichimura, On the divisibility problem of the class numbers of algebraic number fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), no. 3, 579–585. Zbl0532.12006MR731519
  3. F. Beukers and S. Tengely, An implementation of Runge’s method for Diophantine equations. Preprint. 
  4. Y. F. Bilu and F. Luca, Divisibility of class numbers: enumerative approach. J. Reine Angew. Math. 578 (2005), 79–91. Zbl1072.11084MR2113890
  5. E. Bombieri, On Weil’s “théorème de décomposition”. Amer. J. Math. 105 (1983), no. 2, 295–308. Zbl0516.12009
  6. A. Brumer, Ramification and class towers of number fields. Michigan Math. J. 12 (1965), no. 2, 129–131. Zbl0136.02701MR202697
  7. A. Brumer and M. Rosen, Class number and ramification in number fields. Nagoya Math. J. 23 (1963), 97–101. Zbl0128.26204MR161858
  8. K. Chakraborty and R. Murty, On the number of real quadratic fields with class number divisible by 3. Proc. Amer. Math. Soc. 131 (2003), no. 1, 41–44 (electronic). Zbl1024.11073MR1929021
  9. S. D. Cohen, The distribution of Galois groups and Hilbert’s irreducibility theorem. Proc. London Math. Soc. (3) 43 (1981), no. 2, 227–250. Zbl0484.12002
  10. R. Dvornicich and U. Zannier, Fields containing values of algebraic functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), no. 3, 421–443. Zbl0819.12003MR1310635
  11. R. Dvornicich and U. Zannier, Fields containing values of algebraic functions. II. (On a conjecture of Schinzel). Acta Arith. 72 (1995), no. 3, 201–210. Zbl0832.12001MR1347486
  12. S. Hernández and F. Luca, Divisibility of exponents of class groups of pure cubic number fields. High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, Fields Inst. Commun., vol. 41, Amer. Math. Soc., Providence, RI, 2004, pp. 237–244. Zbl1090.11070MR2076250
  13. P. Humbert, Sur les nombres de classes de certains corps quadratiques. Comment. Math. Helv. 12 (1940), no. 1, 233–245. Zbl0023.10401MR2359
  14. H. Ichimura, On 2 -rank of the ideal class groups of totally real number fields. Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 7, 329–332. Zbl0514.12015MR682696
  15. M. Ishida, On 2 -rank of the ideal class groups of algebraic number fields. J. Reine Angew. Math. 273 (1975), 165–169. Zbl0299.12009MR366872
  16. S. Kuroda, On the class number of imaginary quadratic number fields. Proc. Japan Acad. 40 (1964), 365–367. Zbl0128.03404MR170882
  17. A. Levin, Vojta’s inequality and rational and integral points of bounded degree on curves. Compos. Math. 143 (2007), no. 1, 73–81. Zbl1169.11026
  18. F. Luca, A note on the divisibility of class numbers of real quadratic fields. C. R. Math. Acad. Sci. Soc. R. Can. 25 (2003), no. 3, 71–75. Zbl1100.11038MR1999181
  19. R. Murty, Exponents of class groups of quadratic fields. Topics in number theory (University Park, PA, 1997), Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 229–239. Zbl0993.11059MR1691322
  20. T. Nagell, Über die Klassenzahl imaginär-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg 1 (1922), 140–150. Zbl48.0170.03
  21. T. Nagell, Collected papers of Trygve Nagell. Vol. 1. Queen’s Papers in Pure and Applied Mathematics, vol. 121, Queen’s University, Kingston, ON, 2002. Zbl0997.01010
  22. S. Nakano, On the construction of certain number fields. Tokyo J. Math. 6 (1983), no. 2, 389–395. Zbl0529.12005MR732091
  23. S. Nakano, On ideal class groups of algebraic number fields. J. Reine Angew. Math. 358 (1985), 61–75. Zbl0559.12004MR797674
  24. P. Roquette and H. Zassenhaus, A class of rank estimate for algebraic number fields. J. London Math. Soc. 44 (1969), 31–38. Zbl0169.38001MR236146
  25. J.-P. Serre, Lectures on the Mordell-Weil theorem, third ed. Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997. Zbl0676.14005MR1757192
  26. K. Soundararajan, Divisibility of class numbers of imaginary quadratic fields. J. London Math. Soc. (2) 61 (2000), no. 3, 681–690. Zbl1018.11054MR1766097
  27. V. G. Sprindžuk, Reducibility of polynomials and rational points on algebraic curves. Dokl. Akad. Nauk SSSR 250 (1980), no. 6, 1327–1330. Zbl0447.12010MR564338
  28. K. Uchida, Class numbers of cubic cyclic fields. J. Math. Soc. Japan 26 (1974), no. 3, 447–453. Zbl0281.12007MR360518
  29. P. Vojta, A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing. J. Amer. Math. Soc. 5 (1992), no. 4, 763–804. Zbl0778.11037MR1151542
  30. P. J. Weinberger, Real quadratic fields with class numbers divisible by n . J. Number Theory 5 (1973), no. 3, 237–241. Zbl0287.12007MR335471
  31. Y. Yamamoto, On unramified Galois extensions of quadratic number fields. Osaka J. Math. 7 (1970), 57–76. Zbl0222.12003MR266898
  32. G. Yu, A note on the divisibility of class numbers of real quadratic fields. J. Number Theory 97 (2002), no. 1, 35–44. Zbl1036.11057MR1939135

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.