Steady ideals and rings

Jan Žemlička; Jan Trlifaj

Rendiconti del Seminario Matematico della Università di Padova (1997)

  • Volume: 98, page 161-172
  • ISSN: 0041-8994

How to cite

top

Žemlička, Jan, and Trlifaj, Jan. "Steady ideals and rings." Rendiconti del Seminario Matematico della Università di Padova 98 (1997): 161-172. <http://eudml.org/doc/108439>.

@article{Žemlička1997,
author = {Žemlička, Jan, Trlifaj, Jan},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {steady rings; dually slender modules; von Neumann regular rings; finitely generated right modules; countably generated ideals; chain rings},
language = {eng},
pages = {161-172},
publisher = {Seminario Matematico of the University of Padua},
title = {Steady ideals and rings},
url = {http://eudml.org/doc/108439},
volume = {98},
year = {1997},
}

TY - JOUR
AU - Žemlička, Jan
AU - Trlifaj, Jan
TI - Steady ideals and rings
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 98
SP - 161
EP - 172
LA - eng
KW - steady rings; dually slender modules; von Neumann regular rings; finitely generated right modules; countably generated ideals; chain rings
UR - http://eudml.org/doc/108439
ER -

References

top
  1. [AF] F.W. Anderson - K.R. Fuller, Rings and Categories of Modules, second ed., Springer, New York (1992). Zbl0765.16001MR1245487
  2. [C] P.M. Cohn, Free Rings and their Relations, Academic Press, New York (1971). Zbl0232.16003MR371938
  3. [CM] R. Colpi - C. Menini, On the structure of *-modules, J. Algebra, 158 (1993), pp. 400-419. Zbl0795.16005MR1226797
  4. [CT] R. Colpi - J. Trlifaj, Classes of generalized *-modules, Comm. Algebra, 22 (1994), pp. 3985-3995. Zbl0818.16003MR1280103
  5. [EGT] P.C. Eklof - K.R. Goodearl - J. Trlifaj, Dually slender modules and steady rings, Forum Math., 9 (1997), pp. 61-74. Zbl0866.16003MR1426454
  6. [EM] P.C. Eklof - A.H. Mekler, Almost Free Modules, North-Holland, New York (1990). Zbl0718.20027MR1055083
  7. [FS] L. Fuchs - L. Salce, Modules over Valuation Domains, M. Dekker, New York (1985) Zbl0578.13004MR786121
  8. [GMN] J.L. Gómez Pardo - G. Militaru - C. NăSTăSESCU, When is HOMR (M, - ) equal to HomR (M, - ) in the category R-gr?, Comm. Algebra, 22 (1994), pp. 3171-3181. Zbl0802.16038MR1272380
  9. [G] K.R. Goodearl, Von Neumann Regular Rings, second ed., Krieger, Melbourne (FL) (1991). Zbl0749.16001MR1150975
  10. [J] A.V. Jategaonkar, A counter-example in ring theory and homological algebra, J. Algebra, 12 (1969), pp. 418-440. Zbl0185.09401MR240131
  11. [MO] C. Menini - A. Orsatti, Representable equivalences between categories of modules and applications, Rend. Sem. Mat. Univ. Padova, 82 (1989), pp. 203-231. Zbl0701.16007MR1049594
  12. [R1] R. Rentschler, Die Vertauschbarkeit des Hom-Funktors mit direkten Summen, Dissertation Ludwig-Maximilians-Univ., Munich (1967). 
  13. [R2] R. Rentschler, Sur les modules M tels que Hom(M, — ) commute avec les sommes directes, C. R. Acad. Sci. Paris, 268 (1969), pp. 930-933. Zbl0179.06102MR241466
  14. [Ro] N. Rodinò, Small non-CF left ideals in End(VD), preprint. 
  15. [T1] J. Trlifaj, Strong incompactness for some non-perfect rings, Proc. Amer. Math. Soc., 123 (1995), pp. 21-25. Zbl0827.16001MR1212288
  16. [T2] J. Trlifaj, Steady rings may contain large sets of orthogonal idempotents, Proc. Conf. «Abelian Groups and Modules» (Padova1994), Kluwer, Boston (1995), pp. 467-473. Zbl0845.16009MR1378220
  17. [T3] J. Trlifaj, Modules over non-perfect rings, in Algebra and Model Theory, Gordon & Breach, Philadelphia (1996), pp. 471-492. MR1687740
  18. [W] R. Wisbauer, Foundations of Module and Ring Theory, Gordon & Breach, Philadelphia (1991). Zbl0746.16001MR1144522

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.