-generated uniserial modules over chain rings
Commentationes Mathematicae Universitatis Carolinae (2004)
- Volume: 45, Issue: 3, page 403-415
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topŽemlička, Jan. "$\omega _1$-generated uniserial modules over chain rings." Commentationes Mathematicae Universitatis Carolinae 45.3 (2004): 403-415. <http://eudml.org/doc/249372>.
@article{Žemlička2004,
abstract = {The purpose of this paper is to provide a criterion of an occurrence of uncountably generated uniserial modules over chain rings. As we show it suffices to investigate two extreme cases, nearly simple chain rings, i.e. chain rings containing only three two-sided ideals, and chain rings with “many” two-sided ideals. We prove that there exists an $\omega _\{1\}$-generated uniserial module over every non-artinian nearly simple chain ring and over chain rings containing an uncountable strictly increasing (resp. decreasing) chain of right (resp. two-sided) ideals. As a consequence we describe right steady serial rings.},
author = {Žemlička, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {chain rings; serial rings; uniserial modules; serial rings; uncountably generated uniserial modules; simple chain rings; lattices of ideals; right steady rings; dually slender modules},
language = {eng},
number = {3},
pages = {403-415},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$\omega _1$-generated uniserial modules over chain rings},
url = {http://eudml.org/doc/249372},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Žemlička, Jan
TI - $\omega _1$-generated uniserial modules over chain rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 3
SP - 403
EP - 415
AB - The purpose of this paper is to provide a criterion of an occurrence of uncountably generated uniserial modules over chain rings. As we show it suffices to investigate two extreme cases, nearly simple chain rings, i.e. chain rings containing only three two-sided ideals, and chain rings with “many” two-sided ideals. We prove that there exists an $\omega _{1}$-generated uniserial module over every non-artinian nearly simple chain ring and over chain rings containing an uncountable strictly increasing (resp. decreasing) chain of right (resp. two-sided) ideals. As a consequence we describe right steady serial rings.
LA - eng
KW - chain rings; serial rings; uniserial modules; serial rings; uncountably generated uniserial modules; simple chain rings; lattices of ideals; right steady rings; dually slender modules
UR - http://eudml.org/doc/249372
ER -
References
top- Bessenrodt Ch., Brungs H.H., Törner G., Right Chain Rings. Part 1, Schriftenreihe des Fachbereich Mathematik Universität Duisburg (1990). (1990)
- Cohn P.M., Free Rings and Their Relations, Academic Press Conder, New York (1971). (1971) Zbl0232.16003MR0371938
- Dubrovin N.I., An example of a chain prime ring with nilpotent elements, Math. USSR, Sb. 48 (1984), 437-444. (1984) Zbl0543.16003MR0691988
- Dubrovin N.I., Chain domains, Moscow Univ. Math. Bull. 35 2 (1980), 56-60. (1980) Zbl0456.16001MR0570590
- Eklof P.C., Goodearl K.R., Trlifaj J., Dually slender modules and steady rings, Forum Math. (1997), 9 61-74. (1997) Zbl0866.16003MR1426454
- Facchini A., Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules, Birkhäuser Basel (1998). (1998) Zbl0930.16001MR1634015
- Fuchs L., Salce L., Modules over Valuation Domains, Marcel Dekker New York and Basel (1985). (1985) Zbl0578.13004MR0786121
- Puninski G., Some model theory over nearly simple uniserial domain and decomposition of serial modules, J. Pure Appl. Algebra (2001), 21 319-337. (2001) MR1852123
- Puninski G., Some model theory over an exceptional uniserial rings and decomposition of serial modules, J. London Math. Soc., Ser. II. (2000), 64 2 311-326. (2000) MR1853453
- Puninski G.E., Tuganbaev A.A., Rings and Modules (Kol'ca i moduli), Moskva, 1998 (in Russian). MR1641739
- Puninski G., Serial Rings, Kluwer Academic Publ. Dordrecht (2001). (2001) Zbl1032.16001MR1855271
- Trlifaj J., Almost -modules need not be finitely generated, Comm. Algebra (1993), 21 2453-2462. (1993) MR1218507
- Žemlička J., Steadiness is tested by a single module, Contemporary Mathematics (2001), 273 301-308. (2001) Zbl0988.16003MR1817172
- Žemlička J., Trlifaj J., Steady ideals and rings, Rend. Sem. Mat. Univ. Padova (1997), 98 161-172. (1997) MR1492975
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.