Products of small modules
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 1, page 9-16
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKálnai, Peter, and Žemlička, Jan. "Products of small modules." Commentationes Mathematicae Universitatis Carolinae 55.1 (2014): 9-16. <http://eudml.org/doc/260781>.
@article{Kálnai2014,
abstract = {Module is said to be small if it is not
a union of strictly increasing infinite
countable chain of submodules. We show
that the class of all small modules
over self-injective purely infinite
ring is closed under direct products
whenever there exists no strongly
inaccessible cardinal.},
author = {Kálnai, Peter, Žemlička, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {small module; self-injectivity; von Neumann regular ring; purely infinite rings; direct sums; direct products; strongly inaccessible cardinals; small modules; self-injectivity; purely infinite rings; direct sums; direct products; strongly inaccessible cardinals; von Neumann regular rings},
language = {eng},
number = {1},
pages = {9-16},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Products of small modules},
url = {http://eudml.org/doc/260781},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Kálnai, Peter
AU - Žemlička, Jan
TI - Products of small modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 1
SP - 9
EP - 16
AB - Module is said to be small if it is not
a union of strictly increasing infinite
countable chain of submodules. We show
that the class of all small modules
over self-injective purely infinite
ring is closed under direct products
whenever there exists no strongly
inaccessible cardinal.
LA - eng
KW - small module; self-injectivity; von Neumann regular ring; purely infinite rings; direct sums; direct products; strongly inaccessible cardinals; small modules; self-injectivity; purely infinite rings; direct sums; direct products; strongly inaccessible cardinals; von Neumann regular rings
UR - http://eudml.org/doc/260781
ER -
References
top- Eklof P.C., Goodearl K.R., Trlifaj J., 10.1515/form.1997.9.61, Forum Math. 9 (1997), 61–74. Zbl0866.16003MR1426454DOI10.1515/form.1997.9.61
- El Bashir R., Kepka T., Němec P., 10.1023/B:CMAJ.0000024528.13249.45, Czechoslovak Math. J. 53 (2003), 891–905. Zbl1080.16504MR2018837DOI10.1023/B:CMAJ.0000024528.13249.45
- Goodearl K.R., Von Neumann Regular Rings, Pitman, London, 1979, Second Ed. Melbourne, FL 1991, Krieger. Zbl0841.16008MR0533669
- Kunen K., Set Theory: An Introduction to Independence Proofs, North Holland, Amsterdam, 1980. Zbl0534.03026MR0597342
- Rentschler R., Sur les modules tels que commute avec les sommes directes, C.R. Acad. Sci. Paris 268 (1969), 930–933. Zbl0179.06102MR0241466
- Růžička P., Trlifaj J., Žemlička J., Criteria of steadiness, Abelian Groups, Module Theory, and Topology, Marcel Dekker, New York, 1998, pp. 359–372. Zbl0917.16004MR1651181
- Stenström B., Rings of Quotients, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 217, Springer, New York-Heidelberg, 1975. MR0389953
- Trlifaj J., 10.1080/00927879308824686, Comm. Algebra 21 (1993), 2453–2462. MR1218507DOI10.1080/00927879308824686
- Trlifaj J., Steady rings may contain large sets of orthogonal idempotents, Proc. Conf. Abelian Groups and Modules (Padova 1994), Kluwer, Dordrecht, 1995, pp. 467–473. Zbl0845.16009MR1378220
- Zelenyuk E.G., Ultrafilters and topologies on groups, de Gruyter Expositions in Mathematics, 50, de Gruyter, Berlin, 2011. Zbl1215.22001MR2768144
- Žemlička J., 10.1090/conm/273/04444, Contemporary Mathematics 273 (2001), 301–308. Zbl0988.16003MR1817172DOI10.1090/conm/273/04444
- Žemlička J., Classes of dually slender modules, Proceedings of the Algebra Symposium, Cluj, 2005, Editura Efes, Cluj-Napoca, 2006, pp. 129–137. Zbl1152.16004MR2338602
- Žemlička J., and Trlifaj J., Steady ideals and rings, Rend. Sem. Mat. Univ. Padova 98 (1997), 161–172. MR1492975
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.