Products of small modules

Peter Kálnai; Jan Žemlička

Commentationes Mathematicae Universitatis Carolinae (2014)

  • Volume: 55, Issue: 1, page 9-16
  • ISSN: 0010-2628

Abstract

top
Module is said to be small if it is not a union of strictly increasing infinite countable chain of submodules. We show that the class of all small modules over self-injective purely infinite ring is closed under direct products whenever there exists no strongly inaccessible cardinal.

How to cite

top

Kálnai, Peter, and Žemlička, Jan. "Products of small modules." Commentationes Mathematicae Universitatis Carolinae 55.1 (2014): 9-16. <http://eudml.org/doc/260781>.

@article{Kálnai2014,
abstract = {Module is said to be small if it is not a union of strictly increasing infinite countable chain of submodules. We show that the class of all small modules over self-injective purely infinite ring is closed under direct products whenever there exists no strongly inaccessible cardinal.},
author = {Kálnai, Peter, Žemlička, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {small module; self-injectivity; von Neumann regular ring; purely infinite rings; direct sums; direct products; strongly inaccessible cardinals; small modules; self-injectivity; purely infinite rings; direct sums; direct products; strongly inaccessible cardinals; von Neumann regular rings},
language = {eng},
number = {1},
pages = {9-16},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Products of small modules},
url = {http://eudml.org/doc/260781},
volume = {55},
year = {2014},
}

TY - JOUR
AU - Kálnai, Peter
AU - Žemlička, Jan
TI - Products of small modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 1
SP - 9
EP - 16
AB - Module is said to be small if it is not a union of strictly increasing infinite countable chain of submodules. We show that the class of all small modules over self-injective purely infinite ring is closed under direct products whenever there exists no strongly inaccessible cardinal.
LA - eng
KW - small module; self-injectivity; von Neumann regular ring; purely infinite rings; direct sums; direct products; strongly inaccessible cardinals; small modules; self-injectivity; purely infinite rings; direct sums; direct products; strongly inaccessible cardinals; von Neumann regular rings
UR - http://eudml.org/doc/260781
ER -

References

top
  1. Eklof P.C., Goodearl K.R., Trlifaj J., 10.1515/form.1997.9.61, Forum Math. 9 (1997), 61–74. Zbl0866.16003MR1426454DOI10.1515/form.1997.9.61
  2. El Bashir R., Kepka T., Němec P., 10.1023/B:CMAJ.0000024528.13249.45, Czechoslovak Math. J. 53 (2003), 891–905. Zbl1080.16504MR2018837DOI10.1023/B:CMAJ.0000024528.13249.45
  3. Goodearl K.R., Von Neumann Regular Rings, Pitman, London, 1979, Second Ed. Melbourne, FL 1991, Krieger. Zbl0841.16008MR0533669
  4. Kunen K., Set Theory: An Introduction to Independence Proofs, North Holland, Amsterdam, 1980. Zbl0534.03026MR0597342
  5. Rentschler R., Sur les modules tels que commute avec les sommes directes, C.R. Acad. Sci. Paris 268 (1969), 930–933. Zbl0179.06102MR0241466
  6. Růžička P., Trlifaj J., Žemlička J., Criteria of steadiness, Abelian Groups, Module Theory, and Topology, Marcel Dekker, New York, 1998, pp. 359–372. Zbl0917.16004MR1651181
  7. Stenström B., Rings of Quotients, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 217, Springer, New York-Heidelberg, 1975. MR0389953
  8. Trlifaj J., 10.1080/00927879308824686, Comm. Algebra 21 (1993), 2453–2462. MR1218507DOI10.1080/00927879308824686
  9. Trlifaj J., Steady rings may contain large sets of orthogonal idempotents, Proc. Conf. Abelian Groups and Modules (Padova 1994), Kluwer, Dordrecht, 1995, pp. 467–473. Zbl0845.16009MR1378220
  10. Zelenyuk E.G., Ultrafilters and topologies on groups, de Gruyter Expositions in Mathematics, 50, de Gruyter, Berlin, 2011. Zbl1215.22001MR2768144
  11. Žemlička J., 10.1090/conm/273/04444, Contemporary Mathematics 273 (2001), 301–308. Zbl0988.16003MR1817172DOI10.1090/conm/273/04444
  12. Žemlička J., Classes of dually slender modules, Proceedings of the Algebra Symposium, Cluj, 2005, Editura Efes, Cluj-Napoca, 2006, pp. 129–137. Zbl1152.16004MR2338602
  13. Žemlička J., and Trlifaj J., Steady ideals and rings, Rend. Sem. Mat. Univ. Padova 98 (1997), 161–172. MR1492975

NotesEmbed ?

top

You must be logged in to post comments.