Harmonic measures of perforated domains

Annalisa Malusa

Rendiconti del Seminario Matematico della Università di Padova (1997)

  • Volume: 98, page 273-316
  • ISSN: 0041-8994

How to cite

top

Malusa, Annalisa. "Harmonic measures of perforated domains." Rendiconti del Seminario Matematico della Università di Padova 98 (1997): 273-316. <http://eudml.org/doc/108448>.

@article{Malusa1997,
author = {Malusa, Annalisa},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {harmonic measure; weak* convergence; Borel measure; Dirichlet problem},
language = {eng},
pages = {273-316},
publisher = {Seminario Matematico of the University of Padua},
title = {Harmonic measures of perforated domains},
url = {http://eudml.org/doc/108448},
volume = {98},
year = {1997},
}

TY - JOUR
AU - Malusa, Annalisa
TI - Harmonic measures of perforated domains
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 98
SP - 273
EP - 316
LA - eng
KW - harmonic measure; weak* convergence; Borel measure; Dirichlet problem
UR - http://eudml.org/doc/108448
ER -

References

top
  1. [1] G. Buttazzo - G. DAL MASO - U. Mosco, A derivation theorem for capacities with respect to a Radon measure, J. Funct. Anal., 71 (1987), pp. 263-278. Zbl0622.28006MR880980
  2. [2] D. Cioranescu - F. Murat, Un terme étrange venu d'ailleurs, I-II, in Nonlinear PDE's and Their Applications, Collège de France Seminar, Vols. II and III (H. Brezis - J. L. Lions eds.), Research Notes in Mathematics, Pitman, London, Vol. 60 (1982), pp. 98-138, Vol. 70 (1983), pp. 154-178. Zbl0498.35034
  3. [3] G. Dal Maso - A. DEFRANCESCHI, A Kellogg property for μ-capacities, Boll. Un. Mat. Ital., 7 (1988), pp. 127-135. Zbl0659.31009
  4. [4] G. Dal Maso - A. GARRONI, New results on the asymptotic behaviour of Dirichlet problems in perforated domains, Math. Mod. Meth. Appl. Sci., 4 (1994), pp. 373-407. Zbl0804.47050MR1282241
  5. [5] G. Dal Maso - A. Garroni, Capacitary methods for the study of asymptotic Dirichlet problems, to appear. Zbl0902.35016
  6. [6] G. Dal Maso - U. Mosco, Wiener criteria and energy decay for relaxed Dirichlet problems, Arch. Rational Mech. Anal., 95, n. 4 (1986), pp. 345-387. Zbl0634.35033MR853783
  7. [7] G. Dal Maso - U. Mosco, Wiener criterion and Γ-convergence, Appl. Math. Optim., 15 (1987), pp. 15-63. Zbl0644.35033
  8. [8] J.L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Springer-Verlag, Berlin (1972). Zbl0990.31001MR731258
  9. [9] J.L. Doob, Measure Theory, Springer-Verlag, Berlin (1994). Zbl0791.28001MR1253752
  10. [10] J. Frehse, Capacitary methods in the theory of partial differential equations, Jahresber. Deutsch. Math. Verein, 84 (1982), pp. 1-44. Zbl0486.35002MR644068
  11. [11] A. Garroni, A Wiener estimate for relaxed Dirichlet problems in dimension N ≽ 2, Diff. Integral Eq., 8 (1995), pp. 849-866. Zbl0815.35013
  12. [12] D. Gilbarg - N. S. TRUDINGER, Elliptic Partial Differential Equations, Springer-Verlag, Berlin (1983). Zbl0562.35001MR737190
  13. [13] N.S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, Berlin (1972). Zbl0253.31001MR350027
  14. [14] W. Littman - G. Stampacchia - H.F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. S.N.S. Pisa, 17 (1963), pp. 45-79. Zbl0116.30302MR161019
  15. [15] A. Malusa, Asymptotic behaviour of Dirichlet problems with measure data in perforated domains, Preprint SISSA (1995). Zbl0861.35009MR1399195
  16. [16] A. Malusa - L. ORSINA, Existence and regularity results for relaxed Dirichlet problems with measure data, Ann. Mat. Pura Appl., 170 (1996), pp. 57-87. Zbl0882.35037MR1441614
  17. [17] G. Stampacchia, Le problème de Dirichtet pour les èquations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15, n. 1 (1965), pp. 189-258. Zbl0151.15401MR192177
  18. [18] N. Wiener, The Dirichlet problem, J. Math. Phys., 4 (1924), pp. 127-146. Zbl51.0361.01JFM51.0361.01
  19. [19] W.P. Ziemer, WeaklyDifferentiable Functions, Springer-Verlag, Berlin (1989). Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.