On the asymptotic behavior of Dirichlet problems in a riemannian manifold less small random holes
Michele Balzano, Lino Notarantonio (1998)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Michele Balzano, Lino Notarantonio (1998)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Gianni Dal Maso, Rodica Toader (1996)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Marc Briane, Nicoletta Tchou (2001)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Shai Haran (1993)
Annales de l'institut Fourier
Similarity:
Over a non-archimedean local field the absolute value, raised to any positive power , is a negative definite function and generates (the analogue of) the symmetric stable process. For , this process is transient with potential operator given by M. Riesz’ kernel. We develop this potential theory purely analytically and in an explicit manner, obtaining special features afforded by the non-archimedean setting ; e.g. Harnack’s inequality becomes an equality.
Andrea Bonfiglioli, Ermanno Lanconelli (2006)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Let be a sub-laplacian on a stratified Lie group . In this paper we study the Dirichlet problem for with -boundary data, on domains which are contractible with respect to the natural dilations of . One of the main difficulties we face is the presence of non-regular boundary points for the usual Dirichlet problem for . A potential theory approach is followed. The main results are applied to study a suitable notion of Hardy spaces.
Juan Casado-Díaz (1997)
Annales de l'I.H.P. Analyse non linéaire
Similarity: