On the generalized hypercentralizer of a Lie ideal in a prime ring

V. De Filippis; O. M. Di Vincenzo

Rendiconti del Seminario Matematico della Università di Padova (1998)

  • Volume: 100, page 283-295
  • ISSN: 0041-8994

How to cite

top

De Filippis, V., and Di Vincenzo, O. M.. "On the generalized hypercentralizer of a Lie ideal in a prime ring." Rendiconti del Seminario Matematico della Università di Padova 100 (1998): 283-295. <http://eudml.org/doc/108462>.

@article{DeFilippis1998,
author = {De Filippis, V., Di Vincenzo, O. M.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {hypercentralizers; centralizers; centers; Lie ideals; prime rings},
language = {eng},
pages = {283-295},
publisher = {Seminario Matematico of the University of Padua},
title = {On the generalized hypercentralizer of a Lie ideal in a prime ring},
url = {http://eudml.org/doc/108462},
volume = {100},
year = {1998},
}

TY - JOUR
AU - De Filippis, V.
AU - Di Vincenzo, O. M.
TI - On the generalized hypercentralizer of a Lie ideal in a prime ring
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1998
PB - Seminario Matematico of the University of Padua
VL - 100
SP - 283
EP - 295
LA - eng
KW - hypercentralizers; centralizers; centers; Lie ideals; prime rings
UR - http://eudml.org/doc/108462
ER -

References

top
  1. [1] L. Carini, Centralizers and Lie ideals, Rend. Sem. Mat. Univ. Padova, 78 (1987), pp. 255-259. Zbl0637.16021MR934516
  2. [2] C.L. Chuang - J.S. Lin, On a conjecture by Herstein, J. Algebra, 126 (1989), pp. 119-138. Zbl0688.16036MR1023288
  3. [3] C.L. Chuang - J.S. Lin, Rings with nil and power central k-th commutators, Rend. Circ. Mat. Palermo Serie II, XLI (1992), pp. 62-68. Zbl0786.16016MR1175588
  4. [4] O.M. Di Vincenzo, On the n-th centralizer of a Lie ideal, Boll. Un. Mat. Ital. (7), 3-A (1989), pp. 77-85. Zbl0692.16022MR990089
  5. [5] O.M. Di Vincenzo - A. Valenti, On n-th commutators with nilpotent or regular values in rings, Rend. Circ. Mat. Palermo Serie II, XL (1991), pp. 453-464. Zbl0794.16026MR1174243
  6. [6] B. Felzenszwalb - A. GIAMBRUNO, Centralizers and multilinear polynomials in noncommutative rings, J. London Math. Soc. (2), 19 (1979), pp. 417-428. Zbl0397.16025MR540054
  7. [7] I.N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago (1969). Zbl0232.16001MR271135
  8. [8] I.N. Herstein, On the hypercenter of a ring, J. Algebra, 36 (1975), pp. 151-157. Zbl0313.16036MR371962
  9. [9] N. Jacobson, P.I. Algebras, an Introduction, Lecture Notes in Mathematics, no. 441, Springer-Verlag, Berlin, New York (1975). Zbl0326.16013MR369421
  10. [10] C. Lanski - S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math., 42, n. 1 (1972), pp. 117-135. Zbl0243.16018MR323839
  11. [11] L.M. Rowen, General polynomial identities II, J. Algebra, 38 (1976), pp. 380-392. Zbl0324.16016MR463235

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.