On the generalized hypercentralizer of a Lie ideal in a prime ring
V. De Filippis; O. M. Di Vincenzo
Rendiconti del Seminario Matematico della Università di Padova (1998)
- Volume: 100, page 283-295
- ISSN: 0041-8994
Access Full Article
topHow to cite
topReferences
top- [1] L. Carini, Centralizers and Lie ideals, Rend. Sem. Mat. Univ. Padova, 78 (1987), pp. 255-259. Zbl0637.16021MR934516
- [2] C.L. Chuang - J.S. Lin, On a conjecture by Herstein, J. Algebra, 126 (1989), pp. 119-138. Zbl0688.16036MR1023288
- [3] C.L. Chuang - J.S. Lin, Rings with nil and power central k-th commutators, Rend. Circ. Mat. Palermo Serie II, XLI (1992), pp. 62-68. Zbl0786.16016MR1175588
- [4] O.M. Di Vincenzo, On the n-th centralizer of a Lie ideal, Boll. Un. Mat. Ital. (7), 3-A (1989), pp. 77-85. Zbl0692.16022MR990089
- [5] O.M. Di Vincenzo - A. Valenti, On n-th commutators with nilpotent or regular values in rings, Rend. Circ. Mat. Palermo Serie II, XL (1991), pp. 453-464. Zbl0794.16026MR1174243
- [6] B. Felzenszwalb - A. GIAMBRUNO, Centralizers and multilinear polynomials in noncommutative rings, J. London Math. Soc. (2), 19 (1979), pp. 417-428. Zbl0397.16025MR540054
- [7] I.N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago (1969). Zbl0232.16001MR271135
- [8] I.N. Herstein, On the hypercenter of a ring, J. Algebra, 36 (1975), pp. 151-157. Zbl0313.16036MR371962
- [9] N. Jacobson, P.I. Algebras, an Introduction, Lecture Notes in Mathematics, no. 441, Springer-Verlag, Berlin, New York (1975). Zbl0326.16013MR369421
- [10] C. Lanski - S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math., 42, n. 1 (1972), pp. 117-135. Zbl0243.16018MR323839
- [11] L.M. Rowen, General polynomial identities II, J. Algebra, 38 (1976), pp. 380-392. Zbl0324.16016MR463235