On the generalized hypercentralizer of a Lie ideal in a prime ring

V. De Filippis; O. M. Di Vincenzo

Rendiconti del Seminario Matematico della Università di Padova (1998)

  • Volume: 100, page 283-295
  • ISSN: 0041-8994

How to cite

top

De Filippis, V., and Di Vincenzo, O. M.. "On the generalized hypercentralizer of a Lie ideal in a prime ring." Rendiconti del Seminario Matematico della Università di Padova 100 (1998): 283-295. <http://eudml.org/doc/108462>.

@article{DeFilippis1998,
author = {De Filippis, V., Di Vincenzo, O. M.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {hypercentralizers; centralizers; centers; Lie ideals; prime rings},
language = {eng},
pages = {283-295},
publisher = {Seminario Matematico of the University of Padua},
title = {On the generalized hypercentralizer of a Lie ideal in a prime ring},
url = {http://eudml.org/doc/108462},
volume = {100},
year = {1998},
}

TY - JOUR
AU - De Filippis, V.
AU - Di Vincenzo, O. M.
TI - On the generalized hypercentralizer of a Lie ideal in a prime ring
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1998
PB - Seminario Matematico of the University of Padua
VL - 100
SP - 283
EP - 295
LA - eng
KW - hypercentralizers; centralizers; centers; Lie ideals; prime rings
UR - http://eudml.org/doc/108462
ER -

References

top
  1. [1] L. Carini, Centralizers and Lie ideals, Rend. Sem. Mat. Univ. Padova, 78 (1987), pp. 255-259. Zbl0637.16021MR934516
  2. [2] C.L. Chuang - J.S. Lin, On a conjecture by Herstein, J. Algebra, 126 (1989), pp. 119-138. Zbl0688.16036MR1023288
  3. [3] C.L. Chuang - J.S. Lin, Rings with nil and power central k-th commutators, Rend. Circ. Mat. Palermo Serie II, XLI (1992), pp. 62-68. Zbl0786.16016MR1175588
  4. [4] O.M. Di Vincenzo, On the n-th centralizer of a Lie ideal, Boll. Un. Mat. Ital. (7), 3-A (1989), pp. 77-85. Zbl0692.16022MR990089
  5. [5] O.M. Di Vincenzo - A. Valenti, On n-th commutators with nilpotent or regular values in rings, Rend. Circ. Mat. Palermo Serie II, XL (1991), pp. 453-464. Zbl0794.16026MR1174243
  6. [6] B. Felzenszwalb - A. GIAMBRUNO, Centralizers and multilinear polynomials in noncommutative rings, J. London Math. Soc. (2), 19 (1979), pp. 417-428. Zbl0397.16025MR540054
  7. [7] I.N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago (1969). Zbl0232.16001MR271135
  8. [8] I.N. Herstein, On the hypercenter of a ring, J. Algebra, 36 (1975), pp. 151-157. Zbl0313.16036MR371962
  9. [9] N. Jacobson, P.I. Algebras, an Introduction, Lecture Notes in Mathematics, no. 441, Springer-Verlag, Berlin, New York (1975). Zbl0326.16013MR369421
  10. [10] C. Lanski - S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math., 42, n. 1 (1972), pp. 117-135. Zbl0243.16018MR323839
  11. [11] L.M. Rowen, General polynomial identities II, J. Algebra, 38 (1976), pp. 380-392. Zbl0324.16016MR463235

NotesEmbed ?

top

You must be logged in to post comments.