Compact flat manifolds with holonomy group 𝐙 2 𝐙 2 (II)

J. P. Rossetti; P. A. Tirao

Rendiconti del Seminario Matematico della Università di Padova (1999)

  • Volume: 101, page 99-136
  • ISSN: 0041-8994

How to cite

top

Rossetti, J. P., and Tirao, P. A.. "Compact flat manifolds with holonomy group $\mathbf {Z}_2 \bigoplus \mathbf {Z}_2$ (II)." Rendiconti del Seminario Matematico della Università di Padova 101 (1999): 99-136. <http://eudml.org/doc/108496>.

@article{Rossetti1999,
author = {Rossetti, J. P., Tirao, P. A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {fundamental group; compact flat manifold; holonomy group; Betti number},
language = {eng},
pages = {99-136},
publisher = {Seminario Matematico of the University of Padua},
title = {Compact flat manifolds with holonomy group $\mathbf \{Z\}_2 \bigoplus \mathbf \{Z\}_2$ (II)},
url = {http://eudml.org/doc/108496},
volume = {101},
year = {1999},
}

TY - JOUR
AU - Rossetti, J. P.
AU - Tirao, P. A.
TI - Compact flat manifolds with holonomy group $\mathbf {Z}_2 \bigoplus \mathbf {Z}_2$ (II)
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1999
PB - Seminario Matematico of the University of Padua
VL - 101
SP - 99
EP - 136
LA - eng
KW - fundamental group; compact flat manifold; holonomy group; Betti number
UR - http://eudml.org/doc/108496
ER -

References

top
  1. [1] H. Brown - R. Bülow - J. Neub - H. Wondratschok - H. Zassenhaus, Crystallografic Groups of Four-Dimensional Space, Wiley, New York (1978). 
  2. [2] L. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag, New York (1986). Zbl0608.53001MR862114
  3. [3] L. Charlap, Compact Flat Manifolds: I, Ann. of Math., 81 (1965), pp. 15-30. Zbl0132.16506MR170305
  4. [4] P. Cobb, Manifolds with holonomy group Z2 ⊕ Z2 and first Betti number zero, J. Differential Geometry, 10 (1975), pp. 221-224. Zbl0349.53027
  5. [5] I. Dotti Miatello - R. Miatello, Isospectral compact flat manifolds, Duke Mathematical Journal, 68 (1992), pp. 489-498. Zbl0781.53032MR1194952
  6. [6] D. Heisler, On the cohomology of modules over the Klein group, Ph. D. Thesis, State University of New York atStony Brook (1973). 
  7. [7] H. Hiller - C. Sah, Holonomy offlat manifolds with β 1= 0, Quart. J. Math. Oxford (2), 37 (1986), pp. 177-187. Zbl0598.57014
  8. [8] P. Hindman - L. Klingler - C.J. Odenthal, On the Krull-Schmidt-Azumaya theorem for integral group rings, Comm. in Algebra, to appear. Zbl0914.20003MR1647074
  9. [9] L. Nazarova, Integral representations of the Klein's four group, Dokl. Akad. Nauk. SSSR, 140 (1961), p. 1011; English transl. in Soviet Math. Dokl., 2 (1961) p. 1304. Zbl0106.02602MR130916
  10. [10] I. Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc., 8 (1957), pp. 142-146. Zbl0077.25103MR83493
  11. [11] I. Reiner, Failure of the Krull-Schmidt theorem for integral representations, Michigan Math. Jour., 9 (1962), pp. 225-231. Zbl0106.02504MR144942
  12. [12] J. Rossetti - P. Tirao, Compact Flat Manifolds with Holonomy Group Z2⊕Z2, Proc. Amer. Math Soc., 124 (1996), pp. 2491-2499. Zbl0864.53027
  13. [13] H. Zassenhaus, Uber einen Algorithmus zur Bestimmung der Raumgruppen, Comment. Math. Helvetici, 21 (1948), pp. 117-141. Zbl0030.00902MR24424

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.