A priori inequalities in L ( Ω ) for solutions of elliptic equations in unbounded domains

Maurizio Chicco; Marina Venturino

Rendiconti del Seminario Matematico della Università di Padova (1999)

  • Volume: 102, page 141-149
  • ISSN: 0041-8994

How to cite

top

Chicco, Maurizio, and Venturino, Marina. "A priori inequalities in $L ^\infty (\Omega )$ for solutions of elliptic equations in unbounded domains." Rendiconti del Seminario Matematico della Università di Padova 102 (1999): 141-149. <http://eudml.org/doc/108498>.

@article{Chicco1999,
author = {Chicco, Maurizio, Venturino, Marina},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {subsolutions; Dirichlet's boundary conditions; unbounded domains},
language = {eng},
pages = {141-149},
publisher = {Seminario Matematico of the University of Padua},
title = {A priori inequalities in $L ^\infty (\Omega )$ for solutions of elliptic equations in unbounded domains},
url = {http://eudml.org/doc/108498},
volume = {102},
year = {1999},
}

TY - JOUR
AU - Chicco, Maurizio
AU - Venturino, Marina
TI - A priori inequalities in $L ^\infty (\Omega )$ for solutions of elliptic equations in unbounded domains
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1999
PB - Seminario Matematico of the University of Padua
VL - 102
SP - 141
EP - 149
LA - eng
KW - subsolutions; Dirichlet's boundary conditions; unbounded domains
UR - http://eudml.org/doc/108498
ER -

References

top
  1. [1] H. Brézis - P. L. LIONS, An estimate related to the strong maximum principle, Boll. Un. Mat. Ital. (5), 17-A (1980), pp. 503-508. Zbl0436.35016MR590969
  2. [2] C. Miranda, Alcune osservazioni sulla maggiorazione in Lv delle soluzioni deboli delle equazioni ellittiche del secondo ordine, Ann. Mat. Pura Appl. (4), 61 (1963), pp. 151-170. Zbl0134.09102MR177187
  3. [3] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre d coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), pp. 189-258. Zbl0151.15401MR192177
  4. [4] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110 (1976), pp. 353-372. Zbl0353.46018MR463908

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.