Landau’s function for one million billions
Marc Deléglise[1]; Jean-Louis Nicolas[1]; Paul Zimmermann[2]
- [1] Université de Lyon, Université de Lyon 1, CNRS, Institut Camille Jordan, Bât. Doyen Jean Braconnier, 21 Avenue Claude Bernard, F-69622 Villeurbanne cedex, France.
- [2] Centre de Recherche INRIA Nancy Grand Est Projet CACAO -bâtiment A 615 rue du Jardin Botanique, F-54602 Villers-lès-Nancy cedex, France.
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 3, page 625-671
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDeléglise, Marc, Nicolas, Jean-Louis, and Zimmermann, Paul. "Landau’s function for one million billions." Journal de Théorie des Nombres de Bordeaux 20.3 (2008): 625-671. <http://eudml.org/doc/10854>.
@article{Deléglise2008,
abstract = {Let $\{\mathfrak\{S\}\}_n$ denote the symmetric group with $n$ letters, and $g(n)$ the maximal order of an element of $\{\mathfrak\{S\}\}_n$. If the standard factorization of $M$ into primes is $M=q_1^\{\alpha _1\}q_2^\{\alpha _2\}\ldots q_k^\{\alpha _k\}$, we define $\ell (M)$ to be $q_1^\{\alpha _1\}+q_2^\{\alpha _2\}+\ldots +q_k^\{\alpha _k\}$; one century ago, E. Landau proved that $g(n)=\max _\{\ell (M)\le n\} M$ and that, when $n$ goes to infinity, $\log g(n) \sim \sqrt\{n\log (n)\}$.There exists a basic algorithm to compute $g(n)$ for $1 \le n \le N$; its running time is $\mathcal\{O\}\left(N^\{3/2\}/\sqrt\{\log N\}\right)$ and the needed memory is $\mathcal\{O\}(N)$; it allows computing $g(n)$ up to, say, one million. We describe an algorithm to calculate $g(n)$ for $n$ up to $10^\{15\}$. The main idea is to use the so-called $\ell $-superchampion numbers. Similar numbers, the superior highly composite numbers, were introduced by S. Ramanujan to study large values of the divisor function $\tau (n)=\sum _\{d\,|\,n\} 1$.},
affiliation = {Université de Lyon, Université de Lyon 1, CNRS, Institut Camille Jordan, Bât. Doyen Jean Braconnier, 21 Avenue Claude Bernard, F-69622 Villeurbanne cedex, France.; Université de Lyon, Université de Lyon 1, CNRS, Institut Camille Jordan, Bât. Doyen Jean Braconnier, 21 Avenue Claude Bernard, F-69622 Villeurbanne cedex, France.; Centre de Recherche INRIA Nancy Grand Est Projet CACAO -bâtiment A 615 rue du Jardin Botanique, F-54602 Villers-lès-Nancy cedex, France.},
author = {Deléglise, Marc, Nicolas, Jean-Louis, Zimmermann, Paul},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Arithmetical function; symmetric group; maximal order; highly composite number; arithmetical function; highly composite function; Landau's function},
language = {eng},
number = {3},
pages = {625-671},
publisher = {Université Bordeaux 1},
title = {Landau’s function for one million billions},
url = {http://eudml.org/doc/10854},
volume = {20},
year = {2008},
}
TY - JOUR
AU - Deléglise, Marc
AU - Nicolas, Jean-Louis
AU - Zimmermann, Paul
TI - Landau’s function for one million billions
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 3
SP - 625
EP - 671
AB - Let ${\mathfrak{S}}_n$ denote the symmetric group with $n$ letters, and $g(n)$ the maximal order of an element of ${\mathfrak{S}}_n$. If the standard factorization of $M$ into primes is $M=q_1^{\alpha _1}q_2^{\alpha _2}\ldots q_k^{\alpha _k}$, we define $\ell (M)$ to be $q_1^{\alpha _1}+q_2^{\alpha _2}+\ldots +q_k^{\alpha _k}$; one century ago, E. Landau proved that $g(n)=\max _{\ell (M)\le n} M$ and that, when $n$ goes to infinity, $\log g(n) \sim \sqrt{n\log (n)}$.There exists a basic algorithm to compute $g(n)$ for $1 \le n \le N$; its running time is $\mathcal{O}\left(N^{3/2}/\sqrt{\log N}\right)$ and the needed memory is $\mathcal{O}(N)$; it allows computing $g(n)$ up to, say, one million. We describe an algorithm to calculate $g(n)$ for $n$ up to $10^{15}$. The main idea is to use the so-called $\ell $-superchampion numbers. Similar numbers, the superior highly composite numbers, were introduced by S. Ramanujan to study large values of the divisor function $\tau (n)=\sum _{d\,|\,n} 1$.
LA - eng
KW - Arithmetical function; symmetric group; maximal order; highly composite number; arithmetical function; highly composite function; Landau's function
UR - http://eudml.org/doc/10854
ER -
References
top- E. Bach, Sums over Primes. Conference on Algorithmic Number Theory, Turku, May 8-11, 2007.
- E. Bach and J. Sorenson, Computing prime harmonic sums. Submitted to Math. Comp. Zbl1204.11184
- M. Deléglise and J. Rivat, Computing : the Meissel, Lehmer, Lagarias, Miller, Odlyzko method. Math. Comp. 65 (1996), 235–245. Zbl0869.11068MR1322888
- H. Cramér, On the order of magnitude of the difference between consecutive prime numbers. Acta Arithmetica 2 (1936), 23–46. Zbl0015.19702
- P. Dusart, The prime is greater than for . Math. Comp. 68 (1999), 411–415. Zbl0913.11039MR1620223
- P. Erdős and P. Turán, On some problems of a statistical group theory, IV. Acta Math. Acad. Sci. Hungar. 19 (1968), 413–435. Zbl0235.20004MR232833
- H. Gerlach, Über die Elemente einer Menge verallgemeinerter ganzer Zahlen, die klein sind bezüglich einer auf dieser Menge definierten reellwertigen Abbildung. Thesis of the University of Kaiserslautern, 1986. Zbl0606.10037
- J. Grantham, The largest prime dividing the maximal order of an element of . Math. Comp. 64 (1995), 407–410. Zbl0824.11059MR1270619
- E. Landau, Über die Maximalordnung der Permutationen gegebenen Grades. Archiv. der Math. und Phys., Sér 3, 5 (1903), 92–103. Handbuch der Lehre von der Verteilung der Primzahlen, I, 2nd ed, Chelsea, New-York, 1953, 222–229. Zbl34.0233.02
- G. Levitt and J.-L. Nicolas, On the Maximum Order of Torsion Elements in and . Journal of Algebra 208 (1998), 630–642. Zbl0930.11070MR1655470
- J.-P. Massias, Majoration explicite de l’ordre maximum d’un élément du groupe symétrique. Ann. Fac. Sci. Toulouse Math. 6 (1984), 269–280. Zbl0574.10043MR799599
- J.-P. Massias, J.-L. Nicolas et G. Robin. Évaluation asymptotique de l’ordre maximum d’un élément du groupe symétrique. Acta Arithmetica 50 (1988), 221–242. Zbl0588.10049MR960551
- J.-P. Massias, J.-L. Nicolas and G. Robin, Effective Bounds for the Maximal Order of an Element in the Symmetric Group. Math. Comp. 53 (1989), 665–678. Zbl0675.10028MR979940
- W. Miller, The Maximal Order of an Element of a Finite Symmetric Group. Amer. Math. Monthly 94 (1987), 497–506. Zbl1191.11027MR935414
- F. Morain, Table de pour . Internal document, INRIA, 1988.
- T. R. Nicely, http://www.trnicely.net/gaps/gaplist.html
- J.-L. Nicolas, Sur l’ordre maximum d’un élément dans le groupe des permutations. Acta Arithmetica 14 (1968), 315–332. Zbl0179.34804MR230803
- J.-L. Nicolas, Ordre maximal d’un élément du groupe des permutations et highly composite numbers. Bull. Soc. Math. France 97 (1969), 129–191. Zbl0184.07202MR254130
- J.-L. Nicolas, Calcul de l’ordre maximum d’un élément du groupe symétrique . Rev. Française Informat. Recherche Opérationnelle, Sér. R-2 3 (1969), 43–50. Zbl0186.30202MR253514
- J.-L. Nicolas, On highly composite numbers.Ramanujan revisited, edited by G. E. Andrews, R. A. Askey, B. C. Berndt, K. G. Ramanathan, R. A. Rankin, Academic Press, 1988, 216–244. Zbl0651.10029MR938967
- J.-L. Nicolas, On Landau’s function . The Mathematics of Paul Erdős, vol. I, R. L. Graham and J. Nešetřil editors, Springer Verlag, Algorithms and Combinatorics no13 (1997), 228–240. Zbl0869.11077MR1425188
- J.-L. Nicolas, Comparaison des ordres maximaux dans les groupes et . Acta Arithmetica 96 (2000), 175–203. Zbl1016.11043MR1814452
- J.-L. Nicolas and N. Zakic, Champion numbers for the number of representations as a sum of six squares. In preparation.
- S. Ramanujan, Highly composite numbers. Proc. London Math. Soc. Serie 2, 14 (1915), 347–409. Collected papers, Cambridge University Press, 1927, 78–128. Zbl45.1248.01MR2280858
- S. Ramanujan, Highly composite numbers, annotated by J.-L. Nicolas and G. Robin. The Ramanujan J. 1 (1997), 119–153. Zbl0917.11043MR1606180
- H. Riesel, Prime Numbers and Computer Methods for Factorization. Birkhäuser, 1985. Zbl0582.10001MR897531
- G. Robin, Méthodes d’optimisation pour un problème de théorie des nombres. R.A.I.R.O. Informatique Théorique 17 (1983), 239–247. Zbl0531.10012MR743888
- J. B. Rosser and L. Schoenfeld, Approximate Formulas for Some Functions of Prime Numbers. Illinois. J. Math 6 (1962), 64–94. Zbl0122.05001MR137689
- S. M. Shah, An inequality for the arithmetical function . J. Indian Math. Soc. 3 (1939), 316–318. Zbl0022.31004MR1236
- M. Szalay, On the maximal order in and . Acta Arithmetica 37 (1980), 321–331. Zbl0443.10029MR598884
- P. M. B. Vitányi, On the size of DOL languages. Lecture Notes in Computer Science, vol. 15, Springer-Verlag, 1974, 78–92 and 327–338. Zbl0293.68062MR423893
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.