On the geometry at infinity of the universal covering of
Rendiconti del Seminario Matematico della Università di Padova (2000)
- Volume: 104, page 91-108
 - ISSN: 0041-8994
 
Access Full Article
topHow to cite
topSalvai, Marcos. "On the geometry at infinity of the universal covering of $Sl(2, \mathbb {R})$." Rendiconti del Seminario Matematico della Università di Padova 104 (2000): 91-108. <http://eudml.org/doc/108541>.
@article{Salvai2000,
	author = {Salvai, Marcos},
	journal = {Rendiconti del Seminario Matematico della Università di Padova},
	keywords = {asymptotic geodesics; hyperbolic plane},
	language = {eng},
	pages = {91-108},
	publisher = {Seminario Matematico of the University of Padua},
	title = {On the geometry at infinity of the universal covering of $Sl(2, \mathbb \{R\})$},
	url = {http://eudml.org/doc/108541},
	volume = {104},
	year = {2000},
}
TY  - JOUR
AU  - Salvai, Marcos
TI  - On the geometry at infinity of the universal covering of $Sl(2, \mathbb {R})$
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2000
PB  - Seminario Matematico of the University of Padua
VL  - 104
SP  - 91
EP  - 108
LA  - eng
KW  - asymptotic geodesics; hyperbolic plane
UR  - http://eudml.org/doc/108541
ER  - 
References
top- [1] W. Ballmann - M. BRIN - K. BURNS, On surfaces with no conjugate points, J. Diff. Geometry, 25 (1987), pp. 249-273. Zbl0592.53041MR880185
 - [2] A. Beardon, TheGeometry of Discrete Groups, Springer-Verlag (1983). Zbl0528.30001MR698777
 - [3] A. Besse, Einstein manifolds, Springer-Verlag (1987). Zbl0613.53001MR867684
 - [4] J.E. D'Atri, The long-time behavior of geodesics in certain left invariant metrics, Proc. Amer. Math. Soc., 116 (1992), pp. 813-817. Zbl0792.53045MR1145417
 - [5] P. Eberlein - B. O'NEILL, Visibility Manifolds, Pacific J. of Math., 46 (1973), pp. 45-109. Zbl0264.53026MR336648
 - [6] J. Milnor, Curvatures of left invariants metrics on Lie groups, Adv. in Math., 21 (1976), pp. 293-329. Zbl0341.53030MR425012
 - [7] M. Salvai, Spectra of unit tangent bundles of hyperbolic Riemann surfaces, Ann. Global Anal. Geom., 16 (1988), pp. 357-370. Zbl0912.30026MR1635542
 - [8] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc., 15 (1983), pp. 401-487. Zbl0561.57001MR705527
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.