On the geometry at infinity of the universal covering of S l ( 2 , )

Marcos Salvai

Rendiconti del Seminario Matematico della Università di Padova (2000)

  • Volume: 104, page 91-108
  • ISSN: 0041-8994

How to cite

top

Salvai, Marcos. "On the geometry at infinity of the universal covering of $Sl(2, \mathbb {R})$." Rendiconti del Seminario Matematico della Università di Padova 104 (2000): 91-108. <http://eudml.org/doc/108541>.

@article{Salvai2000,
author = {Salvai, Marcos},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {asymptotic geodesics; hyperbolic plane},
language = {eng},
pages = {91-108},
publisher = {Seminario Matematico of the University of Padua},
title = {On the geometry at infinity of the universal covering of $Sl(2, \mathbb \{R\})$},
url = {http://eudml.org/doc/108541},
volume = {104},
year = {2000},
}

TY - JOUR
AU - Salvai, Marcos
TI - On the geometry at infinity of the universal covering of $Sl(2, \mathbb {R})$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2000
PB - Seminario Matematico of the University of Padua
VL - 104
SP - 91
EP - 108
LA - eng
KW - asymptotic geodesics; hyperbolic plane
UR - http://eudml.org/doc/108541
ER -

References

top
  1. [1] W. Ballmann - M. BRIN - K. BURNS, On surfaces with no conjugate points, J. Diff. Geometry, 25 (1987), pp. 249-273. Zbl0592.53041MR880185
  2. [2] A. Beardon, TheGeometry of Discrete Groups, Springer-Verlag (1983). Zbl0528.30001MR698777
  3. [3] A. Besse, Einstein manifolds, Springer-Verlag (1987). Zbl0613.53001MR867684
  4. [4] J.E. D'Atri, The long-time behavior of geodesics in certain left invariant metrics, Proc. Amer. Math. Soc., 116 (1992), pp. 813-817. Zbl0792.53045MR1145417
  5. [5] P. Eberlein - B. O'NEILL, Visibility Manifolds, Pacific J. of Math., 46 (1973), pp. 45-109. Zbl0264.53026MR336648
  6. [6] J. Milnor, Curvatures of left invariants metrics on Lie groups, Adv. in Math., 21 (1976), pp. 293-329. Zbl0341.53030MR425012
  7. [7] M. Salvai, Spectra of unit tangent bundles of hyperbolic Riemann surfaces, Ann. Global Anal. Geom., 16 (1988), pp. 357-370. Zbl0912.30026MR1635542
  8. [8] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc., 15 (1983), pp. 401-487. Zbl0561.57001MR705527

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.