Globally invertible differentiable or holomorphic maps

E. Ballico

Rendiconti del Seminario Matematico della Università di Padova (2001)

  • Volume: 105, page 25-35
  • ISSN: 0041-8994

How to cite

top

Ballico, E.. "Globally invertible differentiable or holomorphic maps." Rendiconti del Seminario Matematico della Università di Padova 105 (2001): 25-35. <http://eudml.org/doc/108553>.

@article{Ballico2001,
author = {Ballico, E.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {25-35},
publisher = {Seminario Matematico of the University of Padua},
title = {Globally invertible differentiable or holomorphic maps},
url = {http://eudml.org/doc/108553},
volume = {105},
year = {2001},
}

TY - JOUR
AU - Ballico, E.
TI - Globally invertible differentiable or holomorphic maps
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2001
PB - Seminario Matematico of the University of Padua
VL - 105
SP - 25
EP - 35
LA - eng
UR - http://eudml.org/doc/108553
ER -

References

top
  1. [1] M. Atiyah, On the Krull-Schmidt theorem with applications to sheaves, Bull. Soc. Math. France, 84 (1956), pp. 307-317; reprinted in «Michael Atiyah Collected Works, Vol. 1», pp. 83-102, Oxford Science Publications, Oxford, 1978. Zbl0072.18101MR86358
  2. [2] M. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc., 7 (1957), pp. 414-452; reprinted in «Michael Atiyah Collected Works, Vol. 1», pp. 105-143, Oxford Science Publications, Oxford, 1978. Zbl0084.17305MR131423
  3. [3] A. Beauville, Surfaces algebriques complexes, Astérisque, 54, 1978. Zbl0394.14014MR485887
  4. [4] A. Beauville, L'inegalite pg ≽ 2q - 4 pour les surfaces de type generale, Appendice à 0. Debarre, Inégalité numériques pour les surfaces de type général, Bull. Soc. Math. France, 110 (1982), pp. 319-346. Zbl0543.14026
  5. [5] E. Bombieri - D. HUSEMÖLLER, Classification and embeddings of surfaces, in «Algebraic geometry, Arcata 1974», pp. 329-423, Amer. Math. Soc. Proc. Symp. Pure Math., 29, 1975. Zbl0326.14009MR506292
  6. [6] E. Bombieri - D. MUMFORD, Enriques' classification in char. p, II, in « Complex Analysis & Algebraic Geometry», Cambridge University Press, 1977. Zbl0348.14021
  7. [7] V. Brinzanescu, Holomorphic Vector Bundles over Compact Complex Surfaces, Lect. Notes in Math. 1624, Springer, 1996. Zbl0848.32024MR1439504
  8. [8] G. Chichilnisky, Topology and invertible maps, Advance Appl. Math., 21 (1998), pp. 113-123. Zbl0915.58014MR1623349
  9. [9] PH. Griffiths - J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, 1978. Zbl0836.14001MR507725
  10. [10] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer-Verlag, 1977. Zbl0367.14001MR463157
  11. [11] D. Husemöller, Elliptic Curves, Graduate Texts in Math.111, Springer-Verlag, 1987. Zbl0605.14032MR868861
  12. [12] M. Inoue, On surfaces of class VII0, Invent Math., 24 (1974), pp. 269-310. Zbl0283.32019MR342734
  13. [13] R. Mandelbaum, Four-dimensional topology, Bull. Amer. Math. Soc., 2 (1980), pp. 1-159. Zbl0476.57005MR551752
  14. [14] J. Milnor - J. Stasheff, Characteristic classes, Annals of Math. Studies76, Princeton University Press, Princeton, N.J., 1974. Zbl0298.57008MR440554
  15. [15] H. Seifert - W. Threlfall, Lehrbuch der Topologie, Teubner Verlag, Lepzig, 1934. JFM60.0496.05
  16. [16] J. Stillwell, Classical Topology and CombinatoriaL Group Theory, Graduate texts in Math. 75, Springer-Verlag, 1980 Zbl0774.57002MR602149
  17. [17] A.-D. Teleman, Projectively flat surfaces and Bogomolov's theorem on class VII0 surfaces, Int. J. Math., 5 (1995), pp. 253-264. Zbl0803.53038MR1266285

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.