Page 1 Next

Displaying 1 – 20 of 35

Showing per page

Classification of degree 2 polynomial automorphisms of C3.

John Erik Fornaess, He Wu (1998)

Publicacions Matemàtiques

For the family of degree at most 2 polynomial self-maps of C3 with nowhere vanishing Jacobian determinant, we give the following classification: for any such map f, it is affinely conjugate to one of the following maps:(i) An affine automorphism;(ii) An elementary polynomial autormorphismE(x, y, z) = (P(y, z) + ax, Q(z) + by, cz + d),where P and Q are polynomials with max{deg(P), deg(Q)} = 2 and abc ≠ 0.(iii)⎧ H1(x, y, z) = (P(x, z) + ay, Q(z) + x, cz + d)⎪ H2(x, y, z) = (P(y, z) + ax, Q(y)...

Fano manifolds of degree ten and EPW sextics

Atanas Iliev, Laurent Manivel (2011)

Annales scientifiques de l'École Normale Supérieure

O’Grady showed that certain special sextics in 5 called EPW sextics admit smooth double covers with a holomorphic symplectic structure. We propose another perspective on these symplectic manifolds, by showing that they can be constructed from the Hilbert schemes of conics on Fano fourfolds of degree ten. As applications, we construct families of Lagrangian surfaces in these symplectic fourfolds, and related integrable systems whose fibers are intermediate Jacobians.

Currently displaying 1 – 20 of 35

Page 1 Next