Dimension theory and nonstable K -theory for net groups

Anthony Bak; Alexei Stepanov

Rendiconti del Seminario Matematico della Università di Padova (2001)

  • Volume: 106, page 207-253
  • ISSN: 0041-8994

How to cite

top

Bak, Anthony, and Stepanov, Alexei. "Dimension theory and nonstable $K$-theory for net groups." Rendiconti del Seminario Matematico della Università di Padova 106 (2001): 207-253. <http://eudml.org/doc/108564>.

@article{Bak2001,
author = {Bak, Anthony, Stepanov, Alexei},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {207-253},
publisher = {Seminario Matematico of the University of Padua},
title = {Dimension theory and nonstable $K$-theory for net groups},
url = {http://eudml.org/doc/108564},
volume = {106},
year = {2001},
}

TY - JOUR
AU - Bak, Anthony
AU - Stepanov, Alexei
TI - Dimension theory and nonstable $K$-theory for net groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2001
PB - Seminario Matematico of the University of Padua
VL - 106
SP - 207
EP - 253
LA - eng
UR - http://eudml.org/doc/108564
ER -

References

top
  1. [Bk1] A. Bak, Nonabelian K-theory: The nilpotent class of K1 and general stability, K-Theory, 4 (1991), pp. 363-397. Zbl0741.19001MR1115826
  2. [Bk2] A. Bak, K-theory of forms, Annals Math. Studies98, Princeton Univ. PressPrinceton, N.J.1981. Zbl0465.10013MR632404
  3. [Bk3] A. Bak, Finite completions, Unpublished. 
  4. [Bk4] A. Bak, Lectures on dimension theory, algebraic homotopy theory, and nonabelian K-theory, Lecture Notes, Buenos-Aires, 1995. 
  5. [Bk5] A. Bak, Dimension theory and group valued functors, preprint. 
  6. [BkV] A. Bak - N.A. Vavilov, Structure of hyperbolic unitary groups I. Elementary subgroups, Algebra Colloquium, 7:2 (2000), pp. 159-196. Zbl0963.20024MR1810843
  7. [BV1] Z.I. Borewicz - N.A. Vavilov, The distribution of subgroups containing a group of block diagonal matrices in the general linear group over a ring, Sov. Math. - Izv. VUZ, 26:11 (1982), pp. 13-18. Zbl0521.20033
  8. [BV1] Z.I. Borewich - - N.A. Vavilov, The distribution of subgroups in the general linear group over a commutative ring, Proc. Steklov. Inst. Math., 3 (1985), pp. 27-46. Zbl0653.20048
  9. [G] I.Z. Golubchik, On the subgroups of the general linear group GLn(R) over an associative ring, R. Russian Math. Surveys, 39:1 (1984), pp. 157-158. Zbl0572.20031MR733962
  10. [H] R. Hazrat, Dimension theory and nonstable K1 of quadratic modules, K-Theory, to appear. Zbl1020.19001MR1962906
  11. [M] J. Milnor, Introduction to algebraic K-theory, Annals Math. StudiesPrinceton Univ. PressPrinceton, N.J., 1971. Zbl0237.18005MR349811
  12. [Mu] A. Mundkur, Dimension theory and nonstable K1, Algebras and Representation Theory, to appear. Zbl1010.19001MR1890592
  13. [S1] A.V. Stepanov, On the distribution of subgroups normalized by a given subgroup, J. Sov. Math., 64 (1993), pp. 769-776. Zbl0790.20069MR1164862
  14. [S2] A.V. Stepanov, Description of subgroups of the general linear group over a ring with the use of stability conditions, Rings and linear groups, Krasnodar Univ. Press, Krasnodar, Russian, 1988, 82-91. MR1206033
  15. [SuTu] A.A. Suslin - M.S. Tulenbaev, A theorem on stabilization for Milnor's K2-functor, J. Sov. Math., 17 (1981), pp. 1804-1819. Zbl0461.18008
  16. [T] G. Tang, Hermitian Groups and K-Theory, K-Theory, 13:3 (1998), pp. 209-267. Zbl0899.19003MR1609905
  17. [Tu] M.S. Tulenbaev, The Schur multiplier of the group of elementary matrices of finite order, J. Sov. Math., 17:4 (1981), pp. 2062-2067. Zbl0459.20042
  18. [Vs1] L.N. Vaserstein, On normal subgroups of GLn over a ring, Lecture Notes Math., 854 (1981), pp. 456-465. Zbl0464.20030MR618316
  19. [Vv1] N.A. Vavilov, Subgroups of the general linear group over a ring that contain a group of block-triangular matrices, Transl. Amer. Math. Soc., 2nd Ser., 132 (1986), pp. 103-104. Zbl0594.20040
  20. [Vv2] N.A. Vavilov, Structure of Chevalley groups over commutative rings, Proc. Conf. Non-associative algebras and related topics, Hiroshima, 1990World Sci. Publ. Singapore et al. (1991), 219-335. Zbl0799.20042MR1150262
  21. [VvS] N.A. Vavilov - A.V. Stepanov, Subgroups of the general linear group over rings satisfying stability conditions, Sov. Math., Izv. VUZ, 33:10 (1989), pp. 23-31. Zbl0702.20033MR1044472

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.