An explicit integral polynomial whose splitting field has Galois group W ( E 8 )

Florent Jouve[1]; Emmanuel Kowalski[2]; David Zywina[3]

  • [1] Dept. of Mathematics, The University of Texas at Austin 1 University Station C1200 Austin, TX, 78712, USA.
  • [2] ETH Zürich – DMATH Rämistrasse 101 8092 Zürich, Switzerland
  • [3] Department of Mathematics, University of Pennsylvania Philadelphia, PA 19104-6395, USA

Journal de Théorie des Nombres de Bordeaux (2008)

  • Volume: 20, Issue: 3, page 761-782
  • ISSN: 1246-7405

Abstract

top
Using the principle that characteristic polynomials of matrices obtained from elements of a reductive group G over Q typically have splitting field with Galois group isomorphic to the Weyl group of G , we construct an explicit monic integral polynomial of degree 240 whose splitting field has Galois group the Weyl group of the exceptional group of type E 8 .

How to cite

top

Jouve, Florent, Kowalski, Emmanuel, and Zywina, David. "An explicit integral polynomial whose splitting field has Galois group $W(\mathbf{E}_8)$." Journal de Théorie des Nombres de Bordeaux 20.3 (2008): 761-782. <http://eudml.org/doc/10859>.

@article{Jouve2008,
abstract = {Using the principle that characteristic polynomials of matrices obtained from elements of a reductive group $\mathbf\{G\}$ over $\mathbf\{Q\}$ typically have splitting field with Galois group isomorphic to the Weyl group of $\mathbf\{G\}$, we construct an explicit monic integral polynomial of degree $240$ whose splitting field has Galois group the Weyl group of the exceptional group of type $\mathbf\{E\}_8$.},
affiliation = {Dept. of Mathematics, The University of Texas at Austin 1 University Station C1200 Austin, TX, 78712, USA.; ETH Zürich – DMATH Rämistrasse 101 8092 Zürich, Switzerland; Department of Mathematics, University of Pennsylvania Philadelphia, PA 19104-6395, USA},
author = {Jouve, Florent, Kowalski, Emmanuel, Zywina, David},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Inverse Galois problem; Weyl group; exceptional algebraic group; random walk on finite group; characteristic polynomial; inverse Galois problem},
language = {eng},
number = {3},
pages = {761-782},
publisher = {Université Bordeaux 1},
title = {An explicit integral polynomial whose splitting field has Galois group $W(\mathbf\{E\}_8)$},
url = {http://eudml.org/doc/10859},
volume = {20},
year = {2008},
}

TY - JOUR
AU - Jouve, Florent
AU - Kowalski, Emmanuel
AU - Zywina, David
TI - An explicit integral polynomial whose splitting field has Galois group $W(\mathbf{E}_8)$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 3
SP - 761
EP - 782
AB - Using the principle that characteristic polynomials of matrices obtained from elements of a reductive group $\mathbf{G}$ over $\mathbf{Q}$ typically have splitting field with Galois group isomorphic to the Weyl group of $\mathbf{G}$, we construct an explicit monic integral polynomial of degree $240$ whose splitting field has Galois group the Weyl group of the exceptional group of type $\mathbf{E}_8$.
LA - eng
KW - Inverse Galois problem; Weyl group; exceptional algebraic group; random walk on finite group; characteristic polynomial; inverse Galois problem
UR - http://eudml.org/doc/10859
ER -

References

top
  1. J. F. Adams, Lectures on exceptional Lie groups. Chicago Lectures in Math., Univ. Chicago Press, 1996. Zbl0866.22008MR1428422
  2. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of finite groups; Maximal subgroups and ordinary characters for simple groups, with computational assistance from J. G. Thackray, Oxford University Press, 1985. Zbl0568.20001MR827219
  3. N. Berry, A. Dubickas, N. Elkies, B. Poonen and C. J. Smyth, The conjugate dimension of algebraic numbers. Quart. J. Math. 55 (2004), 237–252. Zbl1062.11064MR2082091
  4. A. Borel, Linear algebraic groups, 2nd edition. GTM 126, Springer 1991. Zbl0726.20030MR1102012
  5. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system, I. The user language. J. Symbolic Comput., 24 (1997), 235–265; also http://magma.maths.usyd.edu.au/magma/ Zbl0898.68039MR1484478
  6. N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4, 5, 6. Hermann, 1968. Zbl0483.22001MR240238
  7. N. Bourbaki, Groupes et algèbres de Lie, Chapitres 7, 8. Hermann, 1975. MR453824
  8. É. Cartan, Sur la réduction à sa forme canonique de la structure d’un groupe de transformations fini et continu. Amer J. Math. 18 (1896), 1–46 (=Oeuvres Complètes, t. I 1 , 293–353). Zbl27.0288.01
  9. R.W. Carter, Conjugacy classes in the Weyl group. Compositio Math. 25 (1972), 1–59. Zbl0254.17005MR318337
  10. C. Chevalley, Sur certains groupes simples. Tôhoku Math. J. 7 (1955), 14–66. Zbl0066.01503MR73602
  11. A. Cohen, S. Murray and D.E. Taylor, Computing in groups of Lie type. Math. Comp. 73, Number 247, 1477–1498. Zbl1062.20049MR2047097
  12. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.9, 2007, www.gap-system.org 
  13. E. Kowalski, The large sieve and its applications: arithmetic geometry, random walks and discrete groups. Cambridge Tracts in Math. 175, Cambridge Univ. Press, 2008. Zbl1177.11080MR2426239
  14. G. Malle and B.H. Matzat, Inverse Galois theory. Springer Monographs in Math., 1999. Zbl0940.12001MR1711577
  15. Y.I Manin, Cubic forms: algebra, geometry, arithmetic. North Holland Math. Library 4, 2nd ed., 1988. Zbl0582.14010MR833513
  16. Ya. N. Nuzhin, Weyl groups as Galois groups of a regular extension of the field Q , (Russian). Algebra i Logika 34 (1995), no. 3, 311–315, 364; translation in Algebra and Logic 34 (1995), no. 3, 169–172. Zbl0872.12001MR1364468
  17. PARI/GP, version 2.4.2, Bordeaux, 2007, http://pari.math.u-bordeaux.fr/. 
  18. L. Saloff-Coste, Random walks on finite groups. In “Probability on discrete structures”, 263–346, Encyclopaedia Math. Sci., 110, Springer 2004. Zbl1049.60006MR2023654
  19. J-P. Serre, Cours d’arithmétique. PUF 1988. Zbl0225.12002
  20. T. Shioda, Theory of Mordell-Weil lattices. In Proceedings of ICM 1990 (Kyoto), Vol. I (473–489), Springer, 1991. Zbl0746.14009MR1159235
  21. T.A. Springer, Linear algebraic groups, 2nd edition, Progr. Math. 9, Birkhaüser 1998. Zbl0927.20024MR1642713
  22. T.A. Springer, Regular elements of finite reflection groups. Invent. math. 25 (1974), 159–198. Zbl0287.20043MR354894
  23. R. Steinberg, Lectures on Chevalley groups. Yale Univ. Lecture Notes, 1967. MR466335
  24. A. Várilly-Alvarado and D. Zywina, Arithmetic E 8 lattices with maximal Galois action. To appear in LMS J. Comput. Math. Zbl1252.11055
  25. V.E. Voskresenskii, Maximal tori without effect in semisimple algebraic groups (Russian). Matematicheskie Zametki, Vol. 44 (1988), 309–318; English translation: Mathematical Notes 44, 651–655. Zbl0699.20037MR972194

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.