An explicit integral polynomial whose splitting field has Galois group
Florent Jouve[1]; Emmanuel Kowalski[2]; David Zywina[3]
- [1] Dept. of Mathematics, The University of Texas at Austin 1 University Station C1200 Austin, TX, 78712, USA.
- [2] ETH Zürich – DMATH Rämistrasse 101 8092 Zürich, Switzerland
- [3] Department of Mathematics, University of Pennsylvania Philadelphia, PA 19104-6395, USA
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 3, page 761-782
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topJouve, Florent, Kowalski, Emmanuel, and Zywina, David. "An explicit integral polynomial whose splitting field has Galois group $W(\mathbf{E}_8)$." Journal de Théorie des Nombres de Bordeaux 20.3 (2008): 761-782. <http://eudml.org/doc/10859>.
@article{Jouve2008,
abstract = {Using the principle that characteristic polynomials of matrices obtained from elements of a reductive group $\mathbf\{G\}$ over $\mathbf\{Q\}$ typically have splitting field with Galois group isomorphic to the Weyl group of $\mathbf\{G\}$, we construct an explicit monic integral polynomial of degree $240$ whose splitting field has Galois group the Weyl group of the exceptional group of type $\mathbf\{E\}_8$.},
affiliation = {Dept. of Mathematics, The University of Texas at Austin 1 University Station C1200 Austin, TX, 78712, USA.; ETH Zürich – DMATH Rämistrasse 101 8092 Zürich, Switzerland; Department of Mathematics, University of Pennsylvania Philadelphia, PA 19104-6395, USA},
author = {Jouve, Florent, Kowalski, Emmanuel, Zywina, David},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Inverse Galois problem; Weyl group; exceptional algebraic group; random walk on finite group; characteristic polynomial; inverse Galois problem},
language = {eng},
number = {3},
pages = {761-782},
publisher = {Université Bordeaux 1},
title = {An explicit integral polynomial whose splitting field has Galois group $W(\mathbf\{E\}_8)$},
url = {http://eudml.org/doc/10859},
volume = {20},
year = {2008},
}
TY - JOUR
AU - Jouve, Florent
AU - Kowalski, Emmanuel
AU - Zywina, David
TI - An explicit integral polynomial whose splitting field has Galois group $W(\mathbf{E}_8)$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 3
SP - 761
EP - 782
AB - Using the principle that characteristic polynomials of matrices obtained from elements of a reductive group $\mathbf{G}$ over $\mathbf{Q}$ typically have splitting field with Galois group isomorphic to the Weyl group of $\mathbf{G}$, we construct an explicit monic integral polynomial of degree $240$ whose splitting field has Galois group the Weyl group of the exceptional group of type $\mathbf{E}_8$.
LA - eng
KW - Inverse Galois problem; Weyl group; exceptional algebraic group; random walk on finite group; characteristic polynomial; inverse Galois problem
UR - http://eudml.org/doc/10859
ER -
References
top- J. F. Adams, Lectures on exceptional Lie groups. Chicago Lectures in Math., Univ. Chicago Press, 1996. Zbl0866.22008MR1428422
- J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of finite groups; Maximal subgroups and ordinary characters for simple groups, with computational assistance from J. G. Thackray, Oxford University Press, 1985. Zbl0568.20001MR827219
- N. Berry, A. Dubickas, N. Elkies, B. Poonen and C. J. Smyth, The conjugate dimension of algebraic numbers. Quart. J. Math. 55 (2004), 237–252. Zbl1062.11064MR2082091
- A. Borel, Linear algebraic groups, 2nd edition. GTM 126, Springer 1991. Zbl0726.20030MR1102012
- W. Bosma, J. Cannon and C. Playoust, The Magma algebra system, I. The user language. J. Symbolic Comput., 24 (1997), 235–265; also http://magma.maths.usyd.edu.au/magma/ Zbl0898.68039MR1484478
- N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4, 5, 6. Hermann, 1968. Zbl0483.22001MR240238
- N. Bourbaki, Groupes et algèbres de Lie, Chapitres 7, 8. Hermann, 1975. MR453824
- É. Cartan, Sur la réduction à sa forme canonique de la structure d’un groupe de transformations fini et continu. Amer J. Math. 18 (1896), 1–46 (=Oeuvres Complètes, t. I, 293–353). Zbl27.0288.01
- R.W. Carter, Conjugacy classes in the Weyl group. Compositio Math. 25 (1972), 1–59. Zbl0254.17005MR318337
- C. Chevalley, Sur certains groupes simples. Tôhoku Math. J. 7 (1955), 14–66. Zbl0066.01503MR73602
- A. Cohen, S. Murray and D.E. Taylor, Computing in groups of Lie type. Math. Comp. 73, Number 247, 1477–1498. Zbl1062.20049MR2047097
- The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.9, 2007, www.gap-system.org
- E. Kowalski, The large sieve and its applications: arithmetic geometry, random walks and discrete groups. Cambridge Tracts in Math. 175, Cambridge Univ. Press, 2008. Zbl1177.11080MR2426239
- G. Malle and B.H. Matzat, Inverse Galois theory. Springer Monographs in Math., 1999. Zbl0940.12001MR1711577
- Y.I Manin, Cubic forms: algebra, geometry, arithmetic. North Holland Math. Library 4, 2nd ed., 1988. Zbl0582.14010MR833513
- Ya. N. Nuzhin, Weyl groups as Galois groups of a regular extension of the field , (Russian). Algebra i Logika 34 (1995), no. 3, 311–315, 364; translation in Algebra and Logic 34 (1995), no. 3, 169–172. Zbl0872.12001MR1364468
- PARI/GP, version 2.4.2, Bordeaux, 2007, http://pari.math.u-bordeaux.fr/.
- L. Saloff-Coste, Random walks on finite groups. In “Probability on discrete structures”, 263–346, Encyclopaedia Math. Sci., 110, Springer 2004. Zbl1049.60006MR2023654
- J-P. Serre, Cours d’arithmétique. PUF 1988. Zbl0225.12002
- T. Shioda, Theory of Mordell-Weil lattices. In Proceedings of ICM 1990 (Kyoto), Vol. I (473–489), Springer, 1991. Zbl0746.14009MR1159235
- T.A. Springer, Linear algebraic groups, 2nd edition, Progr. Math. 9, Birkhaüser 1998. Zbl0927.20024MR1642713
- T.A. Springer, Regular elements of finite reflection groups. Invent. math. 25 (1974), 159–198. Zbl0287.20043MR354894
- R. Steinberg, Lectures on Chevalley groups. Yale Univ. Lecture Notes, 1967. MR466335
- A. Várilly-Alvarado and D. Zywina, Arithmetic lattices with maximal Galois action. To appear in LMS J. Comput. Math. Zbl1252.11055
- V.E. Voskresenskii, Maximal tori without effect in semisimple algebraic groups (Russian). Matematicheskie Zametki, Vol. 44 (1988), 309–318; English translation: Mathematical Notes 44, 651–655. Zbl0699.20037MR972194
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.