Harnack’s inequalities for solutions to the mean curvature equation and to the capillarity problem
Rendiconti del Seminario Matematico della Università di Padova (2003)
- Volume: 110, page 57-96
- ISSN: 0041-8994
Access Full Article
topHow to cite
topLiang, Fei-Tsen. "Harnack’s inequalities for solutions to the mean curvature equation and to the capillarity problem." Rendiconti del Seminario Matematico della Università di Padova 110 (2003): 57-96. <http://eudml.org/doc/108620>.
@article{Liang2003,
author = {Liang, Fei-Tsen},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {57-96},
publisher = {Seminario Matematico of the University of Padua},
title = {Harnack’s inequalities for solutions to the mean curvature equation and to the capillarity problem},
url = {http://eudml.org/doc/108620},
volume = {110},
year = {2003},
}
TY - JOUR
AU - Liang, Fei-Tsen
TI - Harnack’s inequalities for solutions to the mean curvature equation and to the capillarity problem
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2003
PB - Seminario Matematico of the University of Padua
VL - 110
SP - 57
EP - 96
LA - eng
UR - http://eudml.org/doc/108620
ER -
References
top- [1] E. BOMBIERI - E. DE GIORGI - E. GIUSTI, Una maggiorazione a priori relativa alle ipersuperifici minimali non parametriche, Arch. Rat. Mech. Anal., 32 (1969), pp. 255-267. Zbl0184.32803MR248647
- [2] M. EMMER, Esistenza, unicità e regolarità nelle superfici di equilibrio nei capillari, Ann. Univ. Ferrera Sez. VII, 18 (1973), pp. 79-94. Zbl0275.49005MR336507
- [3] R. FINN, Equilibrium Capillary Surfaces, Grundlehren der Mathem. Wiss. 284, Springer-Verlag, New York, 1986. Zbl0583.35002MR816345
- [4] R. FINN, The inclination of an H-graph, Springer-Verlag Lecture Notes, 1340 (1973), pp. 381-394. Zbl0659.53006MR974600
- [5] R. FINN - E. GIUSTI, On non-parametric syrfaces of constant mean curvature, Ann. Sc. Norm. Sup. Pisa, 4 (1977), pp. 13-31. Zbl0343.53004MR431056
- [6] R. FINN - JIANAN LU, Some remarkable properties of H graphs, Mem. Diff. Equations Math. Physics, 12 (1997), pp. 57-61. Zbl0898.53007MR1636858
- [7] C. GERHARDT, Existence, regularity, and boundary behavior of generalized surfaces of prescribed curvature, Math. Z., 139 (1974), pp. 173-198. Zbl0316.49005MR437925
- [8] C. GERHARDT, Global regularity of the solutions to the capillarity problems, Sup. Pisa, Sci. Fis. Mat. IV, Ser., 3 (1976), pp. 157-175. Zbl0338.49008MR602007
- [9] C. GERHARDT, On the regularity of solutions to Variational Problems in BV(V), Math. Z., 149 (1976), pp. 281-286. Zbl0317.49052MR417887
- [10] D. GILBARG - N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, 2nd Ed., Springer-Verlag, New York, 1983. Zbl0562.35001MR737190
- [11] E. GIUSTI, On the equation of surfaces of prescribed mean curvature: existence and uniqueness without boundary conditions, Invent. Math., 46 (1978), pp. 111-137. Zbl0381.35035MR487722
- [12] E. GIUSTI, Generalized solutions for the mean curvature equation, Pacific J. Math., 88 (1980), pp. 297-321. Zbl0461.49024MR607982
- [13] E. HEINZ, Interior gradient estimates for surfaces z4f(x, y) of prescribed mean curvature, J. Diff. Geom. (1971), pp. 149-157. Zbl0212.44001MR289940
- [14] O. A. LANDYHENSKAYA - N. N. URALTSEVA, Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations, Comm. Pure Appl. Math., 23 (1970), pp. 677-703. Zbl0193.07202MR265745
- [15] F. LIANG, An absolute gradient bound for nonparametric surfaces of constant mean curvature, Indiana Univ. Math. J., 41(3) (1992), pp. 590-604. Zbl0837.53049MR1189902
- [16] F. LIANG, Absolute gradient bounds for nonparametric hypersurfaces of constant mean curvature, Ann. Univ. Ferrara - Sez. VII - Sc. Mat,, XLVIII (2002), pp. 189-217. Zbl1061.49026MR1980832
- [17] F. LIANG, An absolute gradient bound for nonparametric surfaces of constant mean curvature and the structure of generalized solutions for the constant mean curvature equation , Calc. Var. and P.D.E.’s, 7 (1998), pp. 99-123. Zbl0908.35036MR1644285
- [18] F. LIANG, Interpor gradient estimates for solutions to the mean curvature equation, Preprint. Zbl1208.35074
- [19] U. MASSARI - MIRANDA, Minimal Surfaces of Codimension One, North Holland Mathematics Studies 91, Elsevier Science Publ., Amsterdam, 1984. Zbl0565.49030MR795963
- [20] V. G. MAZ’YA, Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, 1095. MR817985
- [21] M. MIRANDA, Superfici cartesiane generalizzate ed insiemi di perimetro finito sui prodotti cartesiani, Ann. Sc. Norm. Sup. Pisa S. III, 18 (1964), pp. 515-542 Zbl0152.24402MR174706
- [22] M. MIRANDA, Superfici minime illimitate, Ann. Sc. Norm. Sup. Pisa S. IV, 4 (1977), pp. 313-322. Zbl0352.49020MR500423
- [23] M. MIRANDA, Sulle singolarietà eliminabili delle soluzioni dell’equazione delle superfici minime, Ann. Sc. Norm. Sup. Pisa S. IV, 4 (1977), pp. 129-132. Zbl0344.35037MR433309
- [24] J. B. SERRIN, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Phil. Trans. Roy. Soc. London A, 264 (1969), pp. 413-496. Zbl0181.38003MR282058
- [25] J. B. SERRIN, The Dirichlet problems for surfaces of constant mean curvature, Proc. Lon. Math. Soc., (3) 21 (1970), pp. 361-384. Zbl0199.16604MR275336
- [26] N. S. TRUDINGER, A new proof of the interior gradient bound for the minimal surface equation in n dimensions, Proc. Nat. Acad. Sci. U.S.A., 69 (1972), pp. 821-823. Zbl0231.53007MR296832
- [27] N. S. TRUDINGER, Gradient estimates and mean curvature, Math. Z., 131 (1973), pp. 165-175. Zbl0253.53003MR324187
- [28] N. S. TRUDINGER, Harnack inequalities for nonuniformly elliptiv divergence structure equations, Invent. Math., 64 (1981), pp. 517-531. Zbl0501.35012MR632988
- [29] W. P. ZIEMER, Weakly Differentiable Functions; Sobolev Spaces and Functions of Bounded Variations, Springer-Verlag, New York, 1989. Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.