Harnack’s inequalities for solutions to the mean curvature equation and to the capillarity problem

Fei-Tsen Liang

Rendiconti del Seminario Matematico della Università di Padova (2003)

  • Volume: 110, page 57-96
  • ISSN: 0041-8994

How to cite

top

Liang, Fei-Tsen. "Harnack’s inequalities for solutions to the mean curvature equation and to the capillarity problem." Rendiconti del Seminario Matematico della Università di Padova 110 (2003): 57-96. <http://eudml.org/doc/108620>.

@article{Liang2003,
author = {Liang, Fei-Tsen},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {57-96},
publisher = {Seminario Matematico of the University of Padua},
title = {Harnack’s inequalities for solutions to the mean curvature equation and to the capillarity problem},
url = {http://eudml.org/doc/108620},
volume = {110},
year = {2003},
}

TY - JOUR
AU - Liang, Fei-Tsen
TI - Harnack’s inequalities for solutions to the mean curvature equation and to the capillarity problem
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2003
PB - Seminario Matematico of the University of Padua
VL - 110
SP - 57
EP - 96
LA - eng
UR - http://eudml.org/doc/108620
ER -

References

top
  1. [1] E. BOMBIERI - E. DE GIORGI - E. GIUSTI, Una maggiorazione a priori relativa alle ipersuperifici minimali non parametriche, Arch. Rat. Mech. Anal., 32 (1969), pp. 255-267. Zbl0184.32803MR248647
  2. [2] M. EMMER, Esistenza, unicità e regolarità nelle superfici di equilibrio nei capillari, Ann. Univ. Ferrera Sez. VII, 18 (1973), pp. 79-94. Zbl0275.49005MR336507
  3. [3] R. FINN, Equilibrium Capillary Surfaces, Grundlehren der Mathem. Wiss. 284, Springer-Verlag, New York, 1986. Zbl0583.35002MR816345
  4. [4] R. FINN, The inclination of an H-graph, Springer-Verlag Lecture Notes, 1340 (1973), pp. 381-394. Zbl0659.53006MR974600
  5. [5] R. FINN - E. GIUSTI, On non-parametric syrfaces of constant mean curvature, Ann. Sc. Norm. Sup. Pisa, 4 (1977), pp. 13-31. Zbl0343.53004MR431056
  6. [6] R. FINN - JIANAN LU, Some remarkable properties of H graphs, Mem. Diff. Equations Math. Physics, 12 (1997), pp. 57-61. Zbl0898.53007MR1636858
  7. [7] C. GERHARDT, Existence, regularity, and boundary behavior of generalized surfaces of prescribed curvature, Math. Z., 139 (1974), pp. 173-198. Zbl0316.49005MR437925
  8. [8] C. GERHARDT, Global regularity of the solutions to the capillarity problems, Sup. Pisa, Sci. Fis. Mat. IV, Ser., 3 (1976), pp. 157-175. Zbl0338.49008MR602007
  9. [9] C. GERHARDT, On the regularity of solutions to Variational Problems in BV(V), Math. Z., 149 (1976), pp. 281-286. Zbl0317.49052MR417887
  10. [10] D. GILBARG - N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, 2nd Ed., Springer-Verlag, New York, 1983. Zbl0562.35001MR737190
  11. [11] E. GIUSTI, On the equation of surfaces of prescribed mean curvature: existence and uniqueness without boundary conditions, Invent. Math., 46 (1978), pp. 111-137. Zbl0381.35035MR487722
  12. [12] E. GIUSTI, Generalized solutions for the mean curvature equation, Pacific J. Math., 88 (1980), pp. 297-321. Zbl0461.49024MR607982
  13. [13] E. HEINZ, Interior gradient estimates for surfaces z4f(x, y) of prescribed mean curvature, J. Diff. Geom. (1971), pp. 149-157. Zbl0212.44001MR289940
  14. [14] O. A. LANDYHENSKAYA - N. N. URALTSEVA, Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations, Comm. Pure Appl. Math., 23 (1970), pp. 677-703. Zbl0193.07202MR265745
  15. [15] F. LIANG, An absolute gradient bound for nonparametric surfaces of constant mean curvature, Indiana Univ. Math. J., 41(3) (1992), pp. 590-604. Zbl0837.53049MR1189902
  16. [16] F. LIANG, Absolute gradient bounds for nonparametric hypersurfaces of constant mean curvature, Ann. Univ. Ferrara - Sez. VII - Sc. Mat,, XLVIII (2002), pp. 189-217. Zbl1061.49026MR1980832
  17. [17] F. LIANG, An absolute gradient bound for nonparametric surfaces of constant mean curvature and the structure of generalized solutions for the constant mean curvature equation , Calc. Var. and P.D.E.’s, 7 (1998), pp. 99-123. Zbl0908.35036MR1644285
  18. [18] F. LIANG, Interpor gradient estimates for solutions to the mean curvature equation, Preprint. Zbl1208.35074
  19. [19] U. MASSARI - MIRANDA, Minimal Surfaces of Codimension One, North Holland Mathematics Studies 91, Elsevier Science Publ., Amsterdam, 1984. Zbl0565.49030MR795963
  20. [20] V. G. MAZ’YA, Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, 1095. MR817985
  21. [21] M. MIRANDA, Superfici cartesiane generalizzate ed insiemi di perimetro finito sui prodotti cartesiani, Ann. Sc. Norm. Sup. Pisa S. III, 18 (1964), pp. 515-542 Zbl0152.24402MR174706
  22. [22] M. MIRANDA, Superfici minime illimitate, Ann. Sc. Norm. Sup. Pisa S. IV, 4 (1977), pp. 313-322. Zbl0352.49020MR500423
  23. [23] M. MIRANDA, Sulle singolarietà eliminabili delle soluzioni dell’equazione delle superfici minime, Ann. Sc. Norm. Sup. Pisa S. IV, 4 (1977), pp. 129-132. Zbl0344.35037MR433309
  24. [24] J. B. SERRIN, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Phil. Trans. Roy. Soc. London A, 264 (1969), pp. 413-496. Zbl0181.38003MR282058
  25. [25] J. B. SERRIN, The Dirichlet problems for surfaces of constant mean curvature, Proc. Lon. Math. Soc., (3) 21 (1970), pp. 361-384. Zbl0199.16604MR275336
  26. [26] N. S. TRUDINGER, A new proof of the interior gradient bound for the minimal surface equation in n dimensions, Proc. Nat. Acad. Sci. U.S.A., 69 (1972), pp. 821-823. Zbl0231.53007MR296832
  27. [27] N. S. TRUDINGER, Gradient estimates and mean curvature, Math. Z., 131 (1973), pp. 165-175. Zbl0253.53003MR324187
  28. [28] N. S. TRUDINGER, Harnack inequalities for nonuniformly elliptiv divergence structure equations, Invent. Math., 64 (1981), pp. 517-531. Zbl0501.35012MR632988
  29. [29] W. P. ZIEMER, Weakly Differentiable Functions; Sobolev Spaces and Functions of Bounded Variations, Springer-Verlag, New York, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.