Lamé operators with projective octahedral and icosahedral monodromies

Keiri Nakanishi

Rendiconti del Seminario Matematico della Università di Padova (2005)

  • Volume: 114, page 109-129
  • ISSN: 0041-8994

How to cite

top

Nakanishi, Keiri. "Lamé operators with projective octahedral and icosahedral monodromies." Rendiconti del Seminario Matematico della Università di Padova 114 (2005): 109-129. <http://eudml.org/doc/108662>.

@article{Nakanishi2005,
author = {Nakanishi, Keiri},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {109-129},
publisher = {Seminario Matematico of the University of Padua},
title = {Lamé operators with projective octahedral and icosahedral monodromies},
url = {http://eudml.org/doc/108662},
volume = {114},
year = {2005},
}

TY - JOUR
AU - Nakanishi, Keiri
TI - Lamé operators with projective octahedral and icosahedral monodromies
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2005
PB - Seminario Matematico of the University of Padua
VL - 114
SP - 109
EP - 129
LA - eng
UR - http://eudml.org/doc/108662
ER -

References

top
  1. [Be] G. V. BELYI, Galois extensions of a maximal cyclotomic field, Math. USSR Izv. 14. no. 2 (1980), pp. 247-256. Zbl0429.12004MR534593
  2. [BD] F. BALDASSARRI - B. DWORK, On second order differential equations with algebraic solutions, Amer. J. Math. 101 (1979), pp. 42-76. Zbl0425.34007MR527825
  3. [B1] F. BALDASSARRI, On second order linear differential equations on algebraic curves. Amer. J. Math. 102 (1980), pp. 517-535. Zbl0438.34007MR573101
  4. [B2] F. BALDASSARRI, On algebraic solutions of Lamé's differential equations. J. Differential Equations. 41 (1981), pp. 44-58. Zbl0478.34009MR626620
  5. [BW] F. BEUKERS - A VAN DER WAALL, Lamé equations with algebraic solutions. J. Differential Equations. 197, no. 1 (2004), pp. 1-25. Zbl1085.34068MR2030146
  6. [C] B. CHIARELLOTTO, On Lamé operators which are pull backs of hypergeometric ones. Trans. Amer. Math. Soc. 347, no. 8 (1995), pp. 2753-2780. Zbl0851.34024MR1308004
  7. [D] S. DAHMEN, Counting Integral Lamé Equations by Means of Dessins d'Enfants. arXiv:math.CA/0311510. Zbl1131.34060
  8. [K] F. KLEIN, Vorlesungen über das Ikosaeder. B. G. Teubner, Leipzig, 1884. JFM16.0061.01
  9. [L1] R. LIT, CANU, Counting Lamé differential operators. Rend. Sem. Mat. Univ. Padova. 107 (2002). pp. 191-208. Zbl1165.34431MR1926211
  10. [L2] R. LIT, CANU, Lamé operators with finite monodromy - a combinatorial approach. J. Differential Equations. 207 (2004), pp. 93-116 Zbl1087.34059MR2100815
  11. [S] L. SCHNEPS, Dessins d'enfants on the Riemann sphere, in L. Schneps (Ed.), ``The Grothendieck theory of dessins d'enfants'', London Math. Soc. Lecture Note Series 200, Cambridge Univ. Press, 1994. Zbl0823.14017MR1305393
  12. [SV] G. B. SHABAT - V. A. VOEVODSKY, Drawing Curves over number fields, in P. Cartier et al (Eds.), ``Grothendieck Fertschrift III'', Progress in Math. 88, Birkhäuser, Basel. 1990, pp. 199-227. Zbl0790.14026MR1106916
  13. [vdW] A. VAN DER WAALL, Lamé Equations with Finite Monodromy. Universiteit Utrecht, Thesis, 2002. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.