Lamé operators with projective octahedral and icosahedral monodromies
Rendiconti del Seminario Matematico della Università di Padova (2005)
- Volume: 114, page 109-129
- ISSN: 0041-8994
Access Full Article
topHow to cite
topNakanishi, Keiri. "Lamé operators with projective octahedral and icosahedral monodromies." Rendiconti del Seminario Matematico della Università di Padova 114 (2005): 109-129. <http://eudml.org/doc/108662>.
@article{Nakanishi2005,
author = {Nakanishi, Keiri},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {109-129},
publisher = {Seminario Matematico of the University of Padua},
title = {Lamé operators with projective octahedral and icosahedral monodromies},
url = {http://eudml.org/doc/108662},
volume = {114},
year = {2005},
}
TY - JOUR
AU - Nakanishi, Keiri
TI - Lamé operators with projective octahedral and icosahedral monodromies
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2005
PB - Seminario Matematico of the University of Padua
VL - 114
SP - 109
EP - 129
LA - eng
UR - http://eudml.org/doc/108662
ER -
References
top- [Be] G. V. BELYI, Galois extensions of a maximal cyclotomic field, Math. USSR Izv. 14. no. 2 (1980), pp. 247-256. Zbl0429.12004MR534593
- [BD] F. BALDASSARRI - B. DWORK, On second order differential equations with algebraic solutions, Amer. J. Math. 101 (1979), pp. 42-76. Zbl0425.34007MR527825
- [B1] F. BALDASSARRI, On second order linear differential equations on algebraic curves. Amer. J. Math. 102 (1980), pp. 517-535. Zbl0438.34007MR573101
- [B2] F. BALDASSARRI, On algebraic solutions of Lamé's differential equations. J. Differential Equations. 41 (1981), pp. 44-58. Zbl0478.34009MR626620
- [BW] F. BEUKERS - A VAN DER WAALL, Lamé equations with algebraic solutions. J. Differential Equations. 197, no. 1 (2004), pp. 1-25. Zbl1085.34068MR2030146
- [C] B. CHIARELLOTTO, On Lamé operators which are pull backs of hypergeometric ones. Trans. Amer. Math. Soc. 347, no. 8 (1995), pp. 2753-2780. Zbl0851.34024MR1308004
- [D] S. DAHMEN, Counting Integral Lamé Equations by Means of Dessins d'Enfants. arXiv:math.CA/0311510. Zbl1131.34060
- [K] F. KLEIN, Vorlesungen über das Ikosaeder. B. G. Teubner, Leipzig, 1884. JFM16.0061.01
- [L1] R. LIT, CANU, Counting Lamé differential operators. Rend. Sem. Mat. Univ. Padova. 107 (2002). pp. 191-208. Zbl1165.34431MR1926211
- [L2] R. LIT, CANU, Lamé operators with finite monodromy - a combinatorial approach. J. Differential Equations. 207 (2004), pp. 93-116 Zbl1087.34059MR2100815
- [S] L. SCHNEPS, Dessins d'enfants on the Riemann sphere, in L. Schneps (Ed.), ``The Grothendieck theory of dessins d'enfants'', London Math. Soc. Lecture Note Series 200, Cambridge Univ. Press, 1994. Zbl0823.14017MR1305393
- [SV] G. B. SHABAT - V. A. VOEVODSKY, Drawing Curves over number fields, in P. Cartier et al (Eds.), ``Grothendieck Fertschrift III'', Progress in Math. 88, Birkhäuser, Basel. 1990, pp. 199-227. Zbl0790.14026MR1106916
- [vdW] A. VAN DER WAALL, Lamé Equations with Finite Monodromy. Universiteit Utrecht, Thesis, 2002.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.