Milnor’s conjecture on quadratic forms and m o d ; 2 motivic complexes

Fabien Morel

Rendiconti del Seminario Matematico della Università di Padova (2005)

  • Volume: 114, page 63-101
  • ISSN: 0041-8994

How to cite

top

Morel, Fabien. "Milnor’s conjecture on quadratic forms and $~mod \ ; 2$ motivic complexes." Rendiconti del Seminario Matematico della Università di Padova 114 (2005): 63-101. <http://eudml.org/doc/108669>.

@article{Morel2005,
author = {Morel, Fabien},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {63-101},
publisher = {Seminario Matematico of the University of Padua},
title = {Milnor’s conjecture on quadratic forms and $~mod \ ; 2$ motivic complexes},
url = {http://eudml.org/doc/108669},
volume = {114},
year = {2005},
}

TY - JOUR
AU - Morel, Fabien
TI - Milnor’s conjecture on quadratic forms and $~mod \ ; 2$ motivic complexes
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2005
PB - Seminario Matematico of the University of Padua
VL - 114
SP - 63
EP - 101
LA - eng
UR - http://eudml.org/doc/108669
ER -

References

top
  1. [1] J. ARASON, Cohomologische Invarianten Quadratischer Formen. J. Algebra, 36 no. 3 (1975), pp. 448-491. Zbl0314.12104MR389761
  2. [2] J. K. ARASON - R. ELMAN, Powers of the fundamental ideal in the Witt ring, Journal of Algebra, 239 (2001), pp. 150-160. Zbl0990.11021MR1827878
  3. [3] P. BALMER - S. GILLE - I. PANIN - C. WALTER, The Gersten conjecture on Witt groups in the equicharacteristic case, Documenta Mathematica 7 (2002), pp. 203-217. Zbl1015.19002MR1934649
  4. [4] J. BARGE - F. MOREL, Cohomologie des groupes linéaires, K-théorie de Milnor et groupes de Witt. C. R. Acad. Sci. Paris Série I Math., 328 no. 3 (1999), pp. 191-196. Zbl0944.20027MR1674598
  5. [5] H. BASS - J. TATE, The Milnor ring of a global field. Algebraic K-theory, II: ``Classical'' algebraic K-theory and connections with arithmetic (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972), pp. 349-446. Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973. Zbl0299.12013MR442061
  6. [6] J.-L. COLLIOT-THÉLÈNE - R. T. HOOBLER - B. KAHN, The Bloch-Ogus-Gabber theorem. Algebraic K-theory (Toronto, ON, 1996), pp. 31-94, Fields Inst. Commun., 16, Amer. Math. Soc., Providence, RI, 1997. Zbl0911.14004MR1466971
  7. [7] F. DÉGLISE, Modules homotopiques avec transferts et motifs génériques. Thèse de l'université Paris VII, disponible à: http://www-math.univ-paris13.fr/Ädeglise/these.html 
  8. [8] P. ELBAZ-VINCENT - S. MÜLLER-STACH, Milnor K-theory of rings, higher Chow groups and applications, Inventiones Math., 148 (2002), pp. 177-206. Zbl1027.19004MR1892848
  9. [9] S. GARIBALDI - A. MERKURJEV - J.-P. SERRE, Cohomological Invariants in Galois Cohomology, University Lecture series, volume 28, AMS. Zbl1159.12311
  10. [10] A. GROTHENDIECK, Sur quelques points d'algèbre homologique, Tohoku Math. J., (2) 9 (1957), pp. 119-221. Zbl0118.26104MR102537
  11. [11] B. KAHN - R. SUJATHA, Motivic cohomology and unramified cohomology of quadrics. J. Eur. Math. Soc. (JEMS), 2 no. 2 (2000), pp. 145-177. Zbl1066.11015MR1763303
  12. [12] K. KATO, A generalization of local class field theory by using K-groups. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 no. 3 (1980), pp. 603-683. Zbl0463.12006MR603953
  13. [13] K. KATO, Milnor K-theory and the Chow group of zero cycles. Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), pp. 241-253, Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986. Zbl0603.14009MR862638
  14. [14] M.-A. KNUS, Quadratic and Hermitian forms over rings. With a foreword by I. Bertuccioni. Grundlehren der Mathematischen Wissenschaften, 294. Springer-Verlag, Berlin, 1991. Zbl0756.11008MR1096299
  15. [15] J. MILNOR, Algebraic K-theory and Quadratic Forms, Inventiones Math., 9 (1970), pp. 318-344. Zbl0199.55501MR260844
  16. [16] F. MOREL, Suite spectrale d'Adams et invariants cohomologiques des formes quadratiques, C.R. Acad. Sci. Paris, t. 328, Série I (1999), pp. 963-968. Zbl0937.19002MR1696188
  17. [17] F. MOREL, Sur les puissances de l'idéal fondamental de l'anneau de Witt, Commentarii Mathematici Helvetici, 79 no. 4 (2004), pp. 689-703. Zbl1061.19001MR2099118
  18. [18] F. MOREL, The stable A1 -connectivity theorems, to appear in K-theory Journal. Zbl1117.14023MR2240215
  19. [19] F. MOREL, Milnor's conjecture on quadratic forms and the operation Sq2 , in preparation. 
  20. [20] F. MOREL - V. VOEVODSKY, A1 -homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math., No. 90 (1999), pp. 45-143. Zbl0983.14007MR1813224
  21. [21] Y. NISNEVICH, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory. Algebraic K-theory: connections with geometry and topology (Lake Louise, AB, 1987), 241-342, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 279, Kluwer Acad. Publ., Dordrecht, 1989. Zbl0715.14009MR1045853
  22. [22] M. OJANGUREN - I. PANIN, A purity theorem for the Witt group. Ann. Sci. École Norm. Sup. (4), 32 no. 1 (1999), pp. 71-86. Zbl0980.11025MR1670591
  23. [23] D. ORLOV - A. VISHIK - V. VOEVODSKY, An exact sequence for Milnor's K-theory with applications to quadratic forms, preprint, 2000, available at http://www.math.uiuc.edu/K-theory/0454/ Zbl1124.14017
  24. [24] M. ROST, Chow groups with coefficients. Doc. Math., 1 No. 16 (1996), pp. 319-393 (electronic). Zbl0864.14002MR1418952
  25. [25] W. SCHARLAU, Quadratic and Hermitian forms. Grundlehren der Mathematischen Wissenschaften, 270 (Springer-Verlag, Berlin, 1985). Zbl0584.10010MR770063
  26. [26] M. SCHMIDT, Wittringhomologie, Dissertation, Universität Regensburg, 1998. 
  27. [27] A. SUSLIN - V. VOEVODSKY, Bloch-Kato conjecture and motivic cohomology with finite coefficients. The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), pp. 117-189, NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000. Zbl1005.19001MR1744945
  28. [28] V. VOEVODSKY, Triangulated categories of motives over a field. Cycles, transfers, and motivic homology theories, pp. 188-238, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000. Zbl1019.14009MR1764202
  29. [29] V. VOEVODSKY, Cohomological theory of presheaves with transfers. Cycles, transfers, and motivic homology theories, pp. 87-137, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000. Zbl1019.14010MR1764200
  30. [30] V. VOEVODSKY, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not., No. 7 (2002), pp. 351-355. Zbl1057.14026MR1883180
  31. [31] V. VOEVODSKY, Reduced power operations in motivic cohomology, Inst. Hautes Études Sci. Publ. Math., No. 98 (2003), pp. 1-57. Zbl1057.14027MR2031198
  32. [32] V. VOEVODSKY, Motivic cohomology with Z/2-coefficients, Inst. Hautes Études Sci. Publ. Math., No. 98 (2003), pp. 59-104. Zbl1057.14028MR2031199
  33. [33] V. VOEVODSKY, The Milnor conjecture, preprint, 1996, available at http://www.math.uiuc.edu/K-theory/0170/ 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.