# Reduced power operations in motivic cohomology

Publications Mathématiques de l'IHÉS (2003)

- Volume: 98, page 1-57
- ISSN: 0073-8301

## Access Full Article

top## How to cite

topVoevodsky, Vladimir. "Reduced power operations in motivic cohomology." Publications Mathématiques de l'IHÉS 98 (2003): 1-57. <http://eudml.org/doc/104196>.

@article{Voevodsky2003,

author = {Voevodsky, Vladimir},

journal = {Publications Mathématiques de l'IHÉS},

keywords = {cohomology operations; Steenrod algebra; vector bundles; characteristic classes},

language = {eng},

pages = {1-57},

publisher = {Springer},

title = {Reduced power operations in motivic cohomology},

url = {http://eudml.org/doc/104196},

volume = {98},

year = {2003},

}

TY - JOUR

AU - Voevodsky, Vladimir

TI - Reduced power operations in motivic cohomology

JO - Publications Mathématiques de l'IHÉS

PY - 2003

PB - Springer

VL - 98

SP - 1

EP - 57

LA - eng

KW - cohomology operations; Steenrod algebra; vector bundles; characteristic classes

UR - http://eudml.org/doc/104196

ER -

## References

top- 1. S. Bloch, The moving lemma for higher Chow groups, J. Algebr. Geom., 3(3) (1994), 537–568. Zbl0830.14003MR1269719
- 2. J. M. Boardman, The eightfold way to BP-operations, In Current trends in algebraic topology, pp. 187–226. Providence: AMS/CMS, 1982. Zbl0563.55002MR686116
- 3. P. May, A general algberaic approach to Steenrod operations, In The Steenrod algebra and its applications, volume 168 of Lecture Notes in Math., pp. 153–231, Springer, 1970. Zbl0242.55023
- 4. V. Voevodsky, C. Mazza, and C. Weibel, Lectures on motivic cohomology, I, www.math.ias.edu/∼vladimir/seminar.html, 2001. Zbl1115.14010
- 5. J. Milnor, The Steenrod algebra and its dual, Annals of Math., 67(1) (1958), 150–171. Zbl0080.38003MR99653
- 6. J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math., 9 (1970), 318–344. Zbl0199.55501MR260844
- 7. F. Morel and V. Voevodsky, A 1-homotopy theory of schemes, Publ. Math. IHES, 90 (1999), 45–143. Zbl0983.14007MR1813224
- 8. N. E. Steenrod and D. B. Epstein, Cohomology operations, Princeton: Princeton Univ. Press, 1962. Zbl0102.38104MR145525
- 9. A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, In The arithmetic and geometry of algebraic cycles, pp. 117–189, Kluwer, 2000. Zbl1005.19001MR1744945
- 10. V. Voevodsky, The Milnor Conjecture, www.math.uiuc.edu/K-theory/170, 1996.
- 11. V. Voevodsky, Triangulated categories of motives over a field, In Cycles, transfers and motivic homology theories, Annals of Math Studies, pp. 188–238, Princeton: Princeton Univ. Press, 2000. Zbl1019.14009MR1764202
- 12. V. Voevodsky, Lectures on motivic cohomology 2000/2001 (written by P. Deligne), www.math.ias.edu/∼vladimir/rear.html, 2000/2001. Zbl1005.19001
- 13. V. Voevodsky, Cancellation theorem, www.math.uiuc.edu/K-theory/541, 2002.
- 14. V. Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. 7 (2002), 351–355. Zbl1057.14026MR1883180
- 15. V. Voevodsky, Motivic cohomology with Z/2-coefficients, Publ. Math. IHES (this volume), 2003. Zbl1057.14028MR2031199
- 16. V. Voevodsky, E. M. Friedlander, and A. Suslin, Cycles, transfers and motivic homology theories, Princeton: Princeton University Press, 2000. Zbl1021.14006MR1764197

## Citations in EuDML Documents

top- Nikita Karpenko, Variations on a theme of rationality of cycles
- Vladimir Voevodsky, Motivic cohomology with $\mathbf{Z}/2$-coefficients
- Nikita A. Karpenko, Holes in ${I}^{n}$
- Fabien Morel, Milnor’s conjecture on quadratic forms and $\phantom{\rule{3.33333pt}{0ex}}mod\phantom{\rule{4pt}{0ex}};2$ motivic complexes
- Bruno Kahn, Formes quadratiques et cycles algébriques

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.