Aproximación clásica de la ecuación de Dirac cuando 0

Jaume Haro

Rendiconti del Seminario Matematico della Università di Padova (2006)

  • Volume: 116, page 1-29
  • ISSN: 0041-8994

How to cite

top

Haro, Jaume. "Aproximación clásica de la ecuación de Dirac cuando $\hslash \rightarrow 0$." Rendiconti del Seminario Matematico della Università di Padova 116 (2006): 1-29. <http://eudml.org/doc/108692>.

@article{Haro2006,
author = {Haro, Jaume},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
pages = {1-29},
publisher = {Seminario Matematico of the University of Padua},
title = {Aproximación clásica de la ecuación de Dirac cuando $\hslash \rightarrow 0$},
url = {http://eudml.org/doc/108692},
volume = {116},
year = {2006},
}

TY - JOUR
AU - Haro, Jaume
TI - Aproximación clásica de la ecuación de Dirac cuando $\hslash \rightarrow 0$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 116
SP - 1
EP - 29
UR - http://eudml.org/doc/108692
ER -

References

top
  1. [1] J. CHAZARAIN - A. PIRIOU, Introduction à la théorie des equations aux derivées partielles linéaires; Gauthier-Villars, Paris (1981). Zbl0446.35001MR598467
  2. [2] J. CHAZARAIN, Spectre d'un hamiltonien quantique et mécanique classique; Comm. Partial Diff. Equat., 5, no. 6 (1980), pp. 595-644. Zbl0437.70014MR578047
  3. [3] J. J. DUISTERMAT, Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities; Comm. Pure and Appl. Math., Vol. 27 (1974), pp. 207-281. MR405513
  4. [4] J. HARO, Estudio del Comportamiento de la Dinámica Cuántica cuando h 3 0; Rend. Sem. Mat. Univ. Pad., Vol. 111 (2004), pp. 25-54. 
  5. [5] J. HARO, The Semiclassical Theory of Quantized Fields in Classical Electromagnetic Backgrounds; Rev. Mex. Fis., 50 (2004), pp. 244-254. Zbl1326.81246MR2106528
  6. [6] J. HARO, Pair Production in an Uniform Electric Field; Int. Jour. Theor. Phys. 42, no. 3(2003), pp. 531-547. Zbl1027.81039
  7. [7] J. HARO, El lõÂmit clàssic de la mecànica quàntica; Tesi Doctoral, U.A.B. (1997). 
  8. [8] J. HARTHONG, Études sur la mécanique quantique; Asterisque, 111 (1984). Zbl0589.35002MR735083
  9. [9] B. HELFFER, Théorie spectrale pour des opérateurs globalement elliptiques; Asterisque 112 (1984). Zbl0541.35002MR743094
  10. [10] B. HELFFER - D. ROBERT, Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques; Ann. Inst.Fourier, 31 (1981), pp. 169-223. Zbl0451.35022MR638623
  11. [11] L. HÖRMANDER, Fourier Integral Operators I; Acta Math., 127 (1971), pp. 79-183. Zbl0212.46601MR388463
  12. [12] V. P. MASLOV - M. V. FEDORIUK, Semi-classical aproximation in quantum mechanics; D. Riedel Publishing Compay, Dordrecht, Holland (1981). Zbl0458.58001
  13. [13] A. MESSIAH, Mécanique Quantique (tome II), Dunod Paris (1960). MR129304
  14. [14] D. ROBERT, Autour de l'approximation Semi-classique; Progress in Mathematics, 68, Birkhäuser (1987). Zbl0621.35001MR897108

NotesEmbed ?

top

You must be logged in to post comments.