Aproximación clásica de la ecuación de Dirac cuando 0

Jaume Haro

Rendiconti del Seminario Matematico della Università di Padova (2006)

  • Volume: 116, page 1-29
  • ISSN: 0041-8994

How to cite

top

Haro, Jaume. "Aproximación clásica de la ecuación de Dirac cuando $\hslash \rightarrow 0$." Rendiconti del Seminario Matematico della Università di Padova 116 (2006): 1-29. <http://eudml.org/doc/108692>.

@article{Haro2006,
author = {Haro, Jaume},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
pages = {1-29},
publisher = {Seminario Matematico of the University of Padua},
title = {Aproximación clásica de la ecuación de Dirac cuando $\hslash \rightarrow 0$},
url = {http://eudml.org/doc/108692},
volume = {116},
year = {2006},
}

TY - JOUR
AU - Haro, Jaume
TI - Aproximación clásica de la ecuación de Dirac cuando $\hslash \rightarrow 0$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 116
SP - 1
EP - 29
UR - http://eudml.org/doc/108692
ER -

References

top
  1. [1] J. CHAZARAIN - A. PIRIOU, Introduction à la théorie des equations aux derivées partielles linéaires; Gauthier-Villars, Paris (1981). Zbl0446.35001MR598467
  2. [2] J. CHAZARAIN, Spectre d'un hamiltonien quantique et mécanique classique; Comm. Partial Diff. Equat., 5, no. 6 (1980), pp. 595-644. Zbl0437.70014MR578047
  3. [3] J. J. DUISTERMAT, Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities; Comm. Pure and Appl. Math., Vol. 27 (1974), pp. 207-281. MR405513
  4. [4] J. HARO, Estudio del Comportamiento de la Dinámica Cuántica cuando h 3 0; Rend. Sem. Mat. Univ. Pad., Vol. 111 (2004), pp. 25-54. 
  5. [5] J. HARO, The Semiclassical Theory of Quantized Fields in Classical Electromagnetic Backgrounds; Rev. Mex. Fis., 50 (2004), pp. 244-254. Zbl1326.81246MR2106528
  6. [6] J. HARO, Pair Production in an Uniform Electric Field; Int. Jour. Theor. Phys. 42, no. 3(2003), pp. 531-547. Zbl1027.81039
  7. [7] J. HARO, El lõÂmit clàssic de la mecànica quàntica; Tesi Doctoral, U.A.B. (1997). 
  8. [8] J. HARTHONG, Études sur la mécanique quantique; Asterisque, 111 (1984). Zbl0589.35002MR735083
  9. [9] B. HELFFER, Théorie spectrale pour des opérateurs globalement elliptiques; Asterisque 112 (1984). Zbl0541.35002MR743094
  10. [10] B. HELFFER - D. ROBERT, Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques; Ann. Inst.Fourier, 31 (1981), pp. 169-223. Zbl0451.35022MR638623
  11. [11] L. HÖRMANDER, Fourier Integral Operators I; Acta Math., 127 (1971), pp. 79-183. Zbl0212.46601MR388463
  12. [12] V. P. MASLOV - M. V. FEDORIUK, Semi-classical aproximation in quantum mechanics; D. Riedel Publishing Compay, Dordrecht, Holland (1981). Zbl0458.58001
  13. [13] A. MESSIAH, Mécanique Quantique (tome II), Dunod Paris (1960). MR129304
  14. [14] D. ROBERT, Autour de l'approximation Semi-classique; Progress in Mathematics, 68, Birkhäuser (1987). Zbl0621.35001MR897108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.