Study of the behavior of quantum dynamics as 0

Jaume Haro

Rendiconti del Seminario Matematico della Università di Padova (2004)

  • Volume: 111, page 25-54
  • ISSN: 0041-8994

How to cite

top

Haro, Jaume. "Study of the behavior of quantum dynamics as $\hslash \rightarrow 0$." Rendiconti del Seminario Matematico della Università di Padova 111 (2004): 25-54. <http://eudml.org/doc/108631>.

@article{Haro2004,
author = {Haro, Jaume},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
pages = {25-54},
publisher = {Seminario Matematico of the University of Padua},
title = {Study of the behavior of quantum dynamics as $\hslash \rightarrow 0$},
url = {http://eudml.org/doc/108631},
volume = {111},
year = {2004},
}

TY - JOUR
AU - Haro, Jaume
TI - Study of the behavior of quantum dynamics as $\hslash \rightarrow 0$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 111
SP - 25
EP - 54
UR - http://eudml.org/doc/108631
ER -

References

top
  1. [1] S. ALBEVERIO - R. HOEGH-KROHN, Oscillatory Integrals and the Method of Stationary Phase in Infinitely Many Dimensions, with applications to the Classical Limit of Quantum Mechanics; Inv. Math., Vol. 40 (1977), pp. 59-106. Zbl0449.35092MR474436
  2. [2] H. BRÉZIS, Analyse fonctionelle, Masson Editeur, Paris (1983). Zbl0511.46001MR697382
  3. [3] J. CHAZARAIN - A. PIRIOU, Introduction à la théorie des equations aux derivées partielles linéaires, Gauthier-Villars, Paris (1981). Zbl0446.35001MR598467
  4. [4] J. CHAZARAIN, Spectre d’un hamiltonien quantique et mécanique classique, Comm. Partial Diff. Equat., 5, no. 6 (1980), pp. 595-644. Zbl0437.70014MR578047
  5. [5] J. J. DUISTERMAT, Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities, Comm. Pure and Appl. Math., Vol. 27 (1974), pp. 207-281. Zbl0285.35010MR405513
  6. [6] G. A. HAGEDORN, Semiclassical quantum mechanics I. The ˇK0 limit for coherent states, Comm. Math. Phys., 71, no. 1 (1980), pp. 77-93. MR556903
  7. [7] J. HARO, El límit clàssic de la mecànica quàntica, Tesi Doctoral, U.A.B. (1997). 
  8. [8] J. HARO, Étude classique de l’équation de Dirac, Ann. Fond. Louis de Broglie, 23, no. 3-4 (1998), pp. 166-172. MR1713230
  9. [9] J. HARTHONG, La propagation des ondes; I.R.M.A., Strasbourg (1978). 
  10. [10] J. HARTHONG, Études sur la mécanique quantique; Asterisque, 111 (1984). Zbl0589.35002MR735083
  11. [11] B. HELFFER, Théorie spectrale pour des opérateurs globalement elliptiques, Asterisque 112 (1984). Zbl0541.35002MR743094
  12. [12] B. HELFFER - D. ROBERT, Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques, Ann. Inst. Fourier, Grenoble 31, 3 (1981), pp. 169-223. Zbl0451.35022MR638623
  13. [13] L. HORMANDER, Fourier Integral Operators I, Acta Math., 127 (1971), pp. 79-183. Zbl0212.46601MR388463
  14. [14] V. P. MASLOV, Théorie des perturbations et méthodes assymptotiques, Dunod, Paris (1972). Zbl0247.47010
  15. [15] V. P. MASLOV - M. V. FEDORIUK, Semi-classical aproximation in quantum mechanics, D. Riedel Publishing Compay, Dordrecht, Holland (1981). Zbl0458.58001
  16. [16] V. P. MASLOV - V. E. NAZAIKINSKI, Assymptotics of operators and PseudoDifferential Equations, Consultants Bureau, New York (1988). MR954389
  17. [17] D. ROBERT, Autour de l’approximation Semi-classique, Progress in Mathematics, 68, Birkhäuser (1987). Zbl0621.35001MR897108
  18. [18] A. TRUMAN, Feynman Path Integrals and Quantum Mechanics as ˇK0, J. Math. Phys., Vol. 17, no. 10 (1976), pp. 1852-1862. MR418760

NotesEmbed ?

top

You must be logged in to post comments.